

Interagency

Wildland Fire Module

Field Guide 2018-2020

TABLE OF CONTENTS

OPERATIONS	
Mission and Purpose	1
Chief Of Party Checklist	2
Chainsaw Guides	3-4
Pumps	5
Structure Protection Tips	6-8
Bendix King Radio Programming (DPHx)	9-11
Long Line Remote Hook Set-Up	12
MAPPING	
Township Range System	13
Lat/Long Conversion	14
Map Scale Conversion, Unit Conversions	15
US UTM Zones and Magnetic Declination	16
Avenza PDF Maps and Mobile Mapping Guide	17
FIRE WEATHER \& FIRE BEHAVIOR	
Cloud Types	18-19
Wind Adjustments	20
ROS Estimator	21
Fire Behavior Terminology \& Psychrometer Use	22
Fuel Sampling Guide	23-24
Fuel Models (New 40 and Original 13)	25-27
WEATHER TABLES: RH Tables	28-50
Fine Dead Fuel Moisture	51-53
Probability of Ignition	54
B L A Determination	55
ADMINISTRATION	
Payroll Calendar	56-61
MEDICAL RESPONSE, FIRELINE LEADERSHIP, \& MISC.	
Air Ambulance Phone List and VMED Life Flight Frequencies (Western US)	62-63
Med-Evac 9-Line Report	64
Fire Line Leader Responsibilities	65
Initial Attack Size-Up Checklist	66
Remote Operations Update Call-In Cheat Sheet	67
Slope; blank pages	68

This document is intended to supplement, and not replace, existing NWCG approved guides including the Incident Response Pocket Guide (IRPG, NFES 1077) and Fireline Handbook (NFES 0065), among others. In addition, this document is not intended to replace previous editions of the Interagency Fire Use Module Field Guide.

Additions/Changes to this document will be considered by the Interagency Wildland Fire Module Steering Committee.

The use of copyrighted corporate names in this document is for the information and convenience of the user, and does not constitute an endorsement of any product or service to the exclusion of others that may be equally suitable.

Special thanks to all who helped develop this guide over the years: Alex Viktora, Patrick Lookabaugh, Dan Ostmann, and Sarah (Cooper) Hartsburg and everyone else who had any input.

Cover Photo: Saguaro WFM - Corral Fire, Six Rivers N.F., August 2013

MISSION AND PURPOSE

(draft PMS 430 - January 2018)
The MISSION of the Interagency Wildland Fire Module Program is to develop and provide an innovative, safe, highly mobile, logistically independent, and versatile fire module with a commitment to achieving diverse management objectives.

The PURPOSE of the Interagency Wildland Fire Module program is to facilitate the use of fire and other management techniques involving planned and unplanned wildland fire events. WFMs are highly skilled and versatile fire crews, which provide technical and ecological based expertise in the areas of prescribed fire and wildfire response such as long-term planning, ignitions, holding, suppression, hazard fuels reduction, and fire effects monitoring; with an emphasis in fire fulfilling its natural or historic role to meet resource and management objectives.

CHIEF OF PARTY CHECKLIST

General:

- Safety of group at all times is your paramount responsibility
- Accept your role as the leader
- Be ready at all times.
- Work hard, be safe

Mobilization

- Obtain copy of Resource Order and make 5 copies
- Update crew Manifest and make 5 copies
- Update crew Quals sheet and make 5 copies
- Document accountable property you are taking (e.g. Radios, GPS units, etc.)
- Download GPS Maps for assignment location
- Document start mileage for vehicles
- Plan travel route and ETA, make hotel reservations if necessary
- Collect applicable maps from files
- Coordinate with the incident/requesting unit re: Food, Backcountry Gear, etc.
- Copies to Office: Manifest, Travel Authorizations, Travel Route, and ETA
- Coordinate with incident/requesting unit while en route

At Assignment

- Check in: Notify Home Unit/Duty Officer of arrival
- Manifest and time records to overhead
- Obtain radio freqs and program by hand or computer (Never Clone from Incident Radios!!)
- Find out specific assignment, sleeping, food, etc.
- Attend all operational briefings.
- Fill out and submit signed CTR's every day
- Pass along any and all updates on progress, changes and status
- Pre-plan Logistical needs: Place orders by 1300 for next shift
- Log chainsaw use and maintenance
- Fill-out and submit 214s and all Documentation
- AAR every shift

Check-Out

- Verify that times on CTRs match times on FTRs for each person
- On most incidents, never depart without signed FTRs in hand
- Make copies if possible of all reports, assignments, photos and maps
- Obtain S \#'s for all equipment to be fire replaced, treat supply nicely
- Obtain and review crew evaluations
- Notify Home Unit/Duty Officer and dispatch of departure and travel plans (ie: routes, ETA, RONs)
- If moving between incidents, Start time = Departure time from current incident

Return to Station

- Notify Duty Officer and Home Dispatch of return
- Tell Dispatch to change status in ROSS for R\&R and module availability
- Fuel all vehicles
- Fill out mileage forms
- Clean inside and outside of vehicles
- Disinfect all food containers, cook equipment and water coolers
- Rehab and log all chainsaws, tools, pumps, etc.
- Before departure, all module gear and vehicles are fire ready
- Restock the fire monitoring kits
- Fill out fire report and make copies and send one to Home Unit
- Fire Folder: All reports, trip manifest, resource order, CTR's collated, Maps, Relevant IAP's, Travel documentation, Crew evaluation, fire report, incident replacement requisitions, C of P Guidelines
- Documentation to Home Unit: Time records, fire reports, crew evaluations, travel sheets, mileage forms

CHAINSAW GUIDES

Use caution when making chainsaw carburetor adjustments. Instructions below are intended for those who are experienced saw tuners. If you are unfamiliar with these procedures, seek out someone who is.

If your saw fails to start, check the following:

1. Gas (50:1)
2. On/off switch is turned ON
3. Spark plug has spark
4. Exhaust screen is clean
5. Air filter is clean
6. Jets are adjusted correctly: NEVER OVER TIGHTEN JETS

Turn both jets to the right (clockwise) until snug.
Then, back to the left (counter-clockwise) until desired setting.
Stihl: high $3 / 4$ turn, low $1 / 4$ turn
7. Carburetor is flooded:

Tighten high jet until its snug.
Pull starter cord until saw starts.
Turn jet left to correct setting.

JET and IDLE Field Adjustments

1. Clean or replace air filter. You cannot properly tune the carb unless the air filter is clean and in good condition.
2. Run saw at full throttle. Turn HS screw in (clockwise) slowly. As the HS screw is turned in, saw is being leaned out (more air, less gas). Keep leaning as long as the saw flutters. Go to flat line (no flutter) and back off.
3. Release throttle and let saw idle. If saw idles too fast (chain turning) or too slow (dies), adjust idle screw only. Turn screw counter clockwise to stop chain or clockwise if saw dies.
4. Idle for 30 seconds. Do the dump/roll test. Saw should idle in all positions. If saw fails the dump test, tighten (turn clockwise) the LS screw a quarter turn. Fuel is pooling and flooding out the engine. Repeat.
5. Throttle up saw. Saw should immediately respond. If it stutters, the LS is too lean. Back out (counter clockwise) the LS screw a quarter turn or less. Repeat until saw revs immediately. Adjust Idle as needed, and repeat steps 3 thru 5.
6. TACH TUNE ASAP. HIGH RPMS SHOULD BE 13,500 OR LESS. IDLE RPM~2,500.

Purging Instructions:

1. Drain fuel tank.
2. Run saw until it stops.
3. Attempt restarting with choke on until saw fails to detonate.
4. Remove fuel tank cap and invert saw for 5 minutes.
5. Remove spark plug
6. Pull starter cord until piston is at lowest point in cylinder
7. Spray WD-40 into cylinder and pull cord a few times
8. Replace cap and plug

Commonly replaced STIHL Parts	
Part Description	STIHL/Mfg Part \#
E clip	94606240801
7 tooth Rim Sprocket	00006421223
Sprocket Washer	00009581032
HD Air Filter	00001201654
Fuel Filter/Pick-up body	00003503504
Spark Plug (NGK)	BPMR 7 A
Spark Plug (Bosch)	WSR 6 F
Round File, Box of 1 Dozen	56057735512
91 Driver Full Skip Chisel Chain 3/8" Pitch, .050" gauge	$33 R S F$
28" bar Rollomatic ES Widetip 91 drivers 3/8" pitch, .050" gauge	(specify \# of drivers w/ this part \#)

STIHL Bars	
3/8" Pitch .050 Gauge	
Bar Length	\# of Drivers
$25^{\prime \prime}$	84
$28^{\prime \prime}$	91
$32^{\prime \prime}$	105
$36^{\prime \prime}$	114

TACH RPM GUIDE		
Model	Idle	High
Stihl		
MS360	2800	13500
MS440	2500	13500
MS460	2500	13500
MS660	2500	13500
Husky		
372 XP	2700	13500
385 XP	2700	12500
$\mathbf{3 9 5}$ XP	2500	12000

2-CYCLE MIX QUANTITIES (Ounces)					
	Gasoline Quantity				
Mix Ratio	$\mathbf{. 5} \mathbf{~ g a l}$	$\mathbf{1 . 0} \mathbf{~ g a l}$	$\mathbf{2 . 0} \mathbf{~ g a l}$	$\mathbf{2 . 5} \mathbf{~ g a l}$	$\mathbf{5} \mathbf{~ g a l}$
$\mathbf{1 6 : \mathbf { 1 }}$	4.0	8.0	16.0	20.0	40.0
$\mathbf{2 4} \mathbf{: 1}$	2.7	5.4	10.7	13.4	27.0
$\mathbf{3 2 : \mathbf { 1 }}$	2.0	4.0	8.0	10.0	20.0
$\mathbf{4 0} \mathbf{: 1}$	1.6	3.2	6.4	8.0	16.0
$\mathbf{5 0}: \mathbf{1}$	1.3	2.6	5.2	6.4	12.8

$\mathbf{1}$ CUP $=$	8 ounces
$\mathbf{1}$ PINT $=$	2 Cups
	16 Ounces
$\mathbf{1}$ QUART $=$	4 Cups
	2 Pints
	32 Ounces
	.946 liters
$\mathbf{1 G A L L O N}=$	4 Quarts
	128 Ounces
	3.785 liters
	8.33 lbs

MIXING GUIDE: 3:1 SLASH MIX- 5 GALLONS		
\# of cans	3 Parts Diesel Stop fuel pump@__gal:	1 Part Gasoline Stop fuel pump@__gal:
1	3.75	1.25
2	7.5	2.50
3	11.25	3.75
4	15.00	5.00
5	18.75	6.25
6	22.50	7.50
7	26.25	8.75
8	30.00	10.00

PORTABLE PUMP OPERATING INSTRUCTIONS

FUEL

- Use 24:1 mix (that's 5 gal. gas / 27 oz . oil) for 2 stroke
- Some new "mini pumps" are 4 stoke engines which take straight gas!! Double check fuel requirements!!
- Connect fuel can line to tank with quick connect. Loosen lid on tank for venting.

CAUTIONS:

1. Do not run engine at full speed until it is thoroughly warmed up (1 minute).
2. Do not run engine with pump disconnected
3. Do not run pump dry.
4. Do not use suction hose without foot valve strainer
5. Remove and drain pump after final use, and at night if temperatures below freezing.

SETTING UP AND STARTING MARK III AND MARK 26 PUMPS

1. Connect fuel line to fuel can and pump as specified above.
2. Connect suction hose to the pump. Be sure to connect the foot valve to the male end of the suction hose. Make sure that the rubber gasket or washer is in place before attaching the female end to the pump.
Tighten firmly with a spanner wrench. Put the foot valve inside the canvas bucket in the pump kit, and/or use rope or a float to the strainer to keep it from being too close to the water surface or resting on the bottom in the mud.
3. Attach wye valve to discharge side of pump. Hand-tighten only. Twist priming pump onto one leg of the wye and hose on the other. Close valve to the hose, leave primer valve open. Stroke primer till water squirts out the small holes, or until resistance is too great to keep at it. After priming, close valve to primer and open valve to hose.
4. Pull the decompression switch out until it comes to a "click" stop. (New pumps don't have decompression switches).
5. Put the choke on START, if the engine is cold.
6. Move throttle to "START AND WARM UP" position.
7. Give starter rope several quick, steady pulls until engine starts or pops. Turn choke off immediately after engine makes any noise to prevent flooding on the next pull.
8. Put choke on RUN and pull engine over until it starts usually 1 to 3 pulls.
9. Push decompression switch fully in as soon as engine starts.
10. Allow engine to warm up fully (hot to the touch) before using full throttle.
If the pump shuts down automatically, you may need to reset the automatic cutout Do this by pushing in on the reset rod (yellow circular wire located below stop switch)

STOPPING A MARK III OR MARK 26 PUMP

1. Move throttle lever to "stop" position.
2. Let pump run for about two minutes in this position.
3. Press and hold stop switch until engine is fully stopped.

ORDERING PUMPS:

- Order two pump kits (NFES 0870) (one is probably short something you really need).
- Hose and appliances: Figure 100 ft . $1^{\prime \prime}$ laterals for every $200 \mathrm{ft} .11 / 2 \prime \prime$ trunk line.
- Remember: Gated " γ 's", nozzles, hose clamps, reducers, etc.

STRUCTURE PROTECTION TIPS

From the Alaska Smokejumper Operations Guide

1. Identify fire hazards that need to be mitigated to protect cabin
a) Is the roof clear?
b) Are the eaves clear?
c) Are there building materials or fire wood stacked against the cabin?
d) Are there trees, snags, or other vegetation that pose a direct hazard to the cabin?
2. Sprinkler system set up tips
a) Sprinkler coverage should wet all surfaces of the structure.
e) Adjust sprinklers for long range spray or short range mist.

3. Sprinkler head attachment methods.
a) Set sprinkler heads on poles, tripods, or stands to get them above ground/cabin

Saw cuts for sprinkler attachment - Notches prevent sprinklers from rotating when hose is charged
4. Pumps
a) Shindaiwa type pumps work well close to water sources
b) Use 5 gal can and fuel line attachment in Sprinkler Kit for Shindaiwa
c) Mark III type pumps work well when the structure is far from, or high above the water source.
5. Misc.
a) Use extra sprinklers on wood piles or surrounding fuels
b) Make sure your hose lay is protected
c) Take the extra step to prevent water from entering the structure

BASIC CABIN PROTECTION ORDER

- 1 pump kit (\#0870)
- 1 sprinkler kit (either \#0920 or \#1048)
- 700' of $1^{\prime \prime}$ hose (\#7273)
- 10 gallon premix (\#7358)

SPRINKLER KIT CONTENTS

Cache Item: NFES 1048 (new kit as of 2008)

Cache Item	Quantity	Description
0010	1	REDUCER - 1 1/2" NH-F (9 TPI) TO 1" NPSH-M (11 1/2 TPI)
0136	1	NOZZLE - GARDEN HOSE, 3/4" NH, ADJUSTABLE, BRASS
0137	1	NOZZLE - PLASTIC, 60 GPM, 1 1/2" NH-F X 4 3/4" LONG
0235	1	WRENCH - SPANNER, 11", 1 1/2" TO 2 1/2" HOSE SIZE
0321	1	HAMMER - CLAW
0394	12	TIE WRAPS - ONE WAY, 15" - 17"
0402	4	REGULATOR - WATER PRESSURE, R.V.,40-50 PSI, 3/4" M/F-H BRASS
0473	1	WRENCH - ADJUSTABLE, 10"
0538	12	PIN - PANEL, HOLD DOWN, 8" LONG
0721	5	GASKET - GARDEN HOSE, 3/4"
0729	1	FORM, - INSTRUCTIONS SPRINKLER KIT ()
0731	4	TEE - HOSELINE, 1 1/2" NH-F X 1 1/2" NH-M X 1" NPSH-M W/CAP
0733	4	REDUCER - 1" NPSH-F (11 1/2 TPI) TO 3/4" NH-M (11 1/2 TPI)
0744	1	PACKSACK - WATERPROOF, W/STRAPS
0808	1	CARTON - FIBERBOARD, 16" X 14" X 12", DOUBLE WALL W/HAND HOLDS
0824	2	BLOCK - WOOD, 2" X 4" X 6"
0835	4	VALVE - SHUT OFF, BRASS, BALL, 3/4" NH
0882	1	NAILS - DUPLEX, DOUBLE HEAD, 16D, 3"
0904	2	VALVE - WYE, GATED, BRASS, 3/4" NH-F X 3/4" NF-M X 3/4" NH-M
0913	8	STAKE - W/CLAMP, SPRINKLER, METAL, 18" X 1" X 1"
0937	1	SAW - PRUNING, 10"
0999	4	SPRINKLER ASSEMBLY - 1/2", SPRINKLER HEAD W/COUPLINGS
1016	5	HOSE - GARDEN, SYNTHETIC, 3/4" NH X 50'
3305	2	CORD - NYLON, 1/8" X 100'
3318	1	BAG - COTTON, LUNCH OR TOOL, 10" X 24"

WRAPPING STRUCTURES - TIPS \& CONSIDERATIONS

Structure wrap (NFES \#0881) comes in 54" x 300' (1350 ft²).

Suggested order list:

- Ladders (min. 2) tall enough to reach roof peak
- Staplers and staples (order extra)
- Scissors
- Needle-nose pliers
- Sharpies/Permanent markers
- $3^{\prime \prime}$ Aluminum tape (avail in rolls of 360^{\prime})

Things to think about:

- Take some time to plan.
- Start from the bottom of the building so your seams don't catch embers.
- Consider likely wind/fire-front direction when deciding how to overlap vertical seams.
- Using aluminum tape on seams should reduce the number of staples needed.
- Draw windows on outside of wrap to prevent breaking them in the process of wrapping \& unwrapping.
- Can you safely work on the roof (if necessary)? Will it support your weight? Are there other options?
- Will you still need access to the inside of the building?
- Consider the unwrapping stage when deciding how many staples to use.

BENDIX KING DPHX PROGRAMMING AND CLONING INSTRUCTIONS

**The instructions below are for analog narrowband frequencies. If you need to program digital frequencies, See the Digital Programming section below. **

1a. Using a programming plug, hold red plug button then Function [FCN] key until display shows "-- -- -- ID" 1b. If programing a mobile radio, press and hold "HOM/SQL" on the mobile while holding "FCN" on the mike.
2. Enter Password (usually 000000), then press the Enter [ENT] key
3. Display will read " CH 00 ". Select a channel by entering the channel you want (1-16) then press the [FCN]key
4. Display will show "RX" receive frequency. To change, press [CLR], then enter desired frequency (the decimal will insert automatically). THEN PRESS [ENT].
5. Display will show "MODE--A".* DO NOT CHANGE. Press [FCN]
6. Display will show RX CG, the Code Guard or Tone. To change, press [CLR], enter in desired 4 digits (the decimal will insert automatically), THEN PRESS [ENT]. To skip press [FCN].
7. Display will show "NACOOOO".* DO NOT CHANGE-Press [FCN] to skip.
8. Display will show "SQL—NRM".* DO NOT CHANGE- Press [FCN] to skip.
9. Display will show "TX" transmit frequency. To change, press [CLR], then enter desired frequency (the decimal will insert automatically) THEN PRESS [ENT].
10. Display will show "MODE--A" DO NOT CHANGE. Press [FCN] to skip.
11. Display will show TX CG, the Code Guard or Tone. To change, press [CLR], enter in desired 4 digits (the decimal will insert automatically)THEN PRESS [ENT]. To skip press[FCN].
12. Display will show "NACOOOO".* DO NOT CHANGE. Press [FCN] to skip.
13. Display will show "TGOOOO1".* DO NOT CHANGE. Press [FCN] to skip.
14. Display will show channel label. See page 9 below for label editing instructions. To skip press [FCN]
15. Display will read "CH XX". Select next channel (press [PRI] for next channel) to program and repeat steps 1-14.
*=DIGITAL FUNCTIONS

CLONING

1. Obtain programmed Master radio.
2. Turn on Master and Slave (your) radios and attach cloning cable between radios. Make sure all scan and priority switches are OFF for both radios.
3. Select desired group to program in Slave radio
4. Access Programming mode of MASTER radio. (see above)
5. With Master radio display reading " CH 00 ", press the * key on the Master radio
6. "PRGM" will appear in screen and flash.
7. Press the Function [FCN] key and "PRGM" will appear without flashing as the slave radio is programmed (Slave radio's screen will flash VH-1)
8. Turn off slave, and connect and program the next slave by pressing the [FCN] key once again.

If display reads "FAIL" - an error has occurred. Turn off both radios then repeat steps 2-8. If "FAIL" appears again, seek help.

NOTES:

- If you want to change a frequency from Narrowband to Wide band, here's what you do:

1. In step 4 above, after you enter in a channel number, 15 for example, you may see 15 N . The N means the frequency is Narrowband.
2. Press the \# key. You should see the N disappear, and now the channel is Wideband

- If you have trouble keying in a tone or changing groups, your keypad may be locked. Look at your screen, and if it says "LOCKED" than press and hold the [FCN] key until you see "UNLOCKED."

BENDIX KING - "ZERO CODES"

The "Zero Codes" control numerous features of your BK radio. USE CAUTION WHEN CHANGING.

- Follow programming steps 1-2 above. Press "FCN" 7 times to arrive at zero code group 1, 8 times for group 2, and 9 times for group 3.
- Zero Codes are specific to each group.
- Common settings are indicated with yellow highlights below.
- In the table below, a function is enabled if a particular number is Grey.
- In your radio, a function is enabled if the number is flashing. For example, to enable DTMF encoder, the number 5 must be flashing in the Group 2 functions. In the chart, you'll see that the number 5 is grey next to the DTMF

COMMON SETTINGS	
GROUP FUNCTION	FLASHING (ENABLED)
1	2,3
2	$1,3,5$
3	5

To change a number from flashing to solid (ie disable a function), simply touch the number on the keypad, THEN PRESS [ENT]. The opposite will also work: to enable a function, touch the number on the keypad, THEN PRESS [ENT].

- To change the "LITE" settings (BACKLIGHT OPERATION) touch the [PRI] button to scroll thru your options, THEN PRESS [ENT].

Grey numbers = Flashing numbers= Enabled Function
Yellow numbers=Flashing numbers=Common Settings

Group One Functions						
Battery Saver Off (If 1 is flashing, Battery Saver is OfF!!)	1	1	2	3	4	5
Group Scan List	1	1	2	3	4	5
Transmit on PRI 1 (old PRI Mode C)	1	1	2	3	4	5
Priority Key Lockout	1	1	2	3	4	5
Scan List Lockout	1	1	2	3	4	5
Group Two Functions						
User Code Guard Enabled	2	1	2	3	4	5
Busy Channel Indicator enabled	2	1	2	3	4	5
Busy Channel Lockout enabled (rarely enabled)	2	1	2	3	4	5
Busy Channel Override enabled (rarely enabled)	2	1	2	3	4	5
ANI enabled (rarely enabled)	2	1	2	3	4	5
Manual DTMF Encoder enabled	2	1	2	3	4	5
Group Three Functions						
Light on Display Change	3	1	2	3	4	5
Light on Key Press	3	1	2	3	4	5
Alpha-numeric Mode enabled	3	1	2	3	4	5
Back Light Duration CHOOSE LITE OFF!!						
Group Label (SEE BELOW)						

National Standard Tones / NACs			
Std Tone \#	Analog Freq	DEC NAC	HEX NAC
1	110.9	1109	455
2	123.0	1230	4 CE
3	131.8	1318	526
4	136.5	1365	555
5	146.2	1462	5 B6
6	156.7	1567	61 F
7	167.9	1679	68 F
8	103.5	1035	40 B
9	100.0	1000	3 E 8
10	107.2	1072	430
11	114.8	1148	47 C
12	127.3	1273	4 F9
13	141.3	1413	585
14	151.4	1514	5 EA
15	162.2	1622	656
16	192.8	1928	788

*Note: If your goal is only to change the Priority settings:

1. Follow programming steps 1-2 above.
2. Press "FCN" 5 or 6 times, to arrive at priority setting 1 or 2 , respectively
3. Press "PRI" repeatedly to cycle through "ON" (selected channel), "OFF" (not functional), and the 16 channels to set your first and second priority

NOAA WX Freqs
RX 162.400
RX 162.425
RX 162.450
RX 162.475
RX 162.500
RX 162.525
RX 162.550

LABEL EDITING
 Channel and Group Labels

1. To enter a new label, press the [FCN] key. The display becomes blank.
2. Press the [PRI] key repeatedly to cycle through characters 0-9, A-Z, -, *, \$, /, +, \%,
, _, <, >, h, blank, then back to the start again. The characters appear in position eight. (if you pass the desired character, press the [PRI] key repeatedly until you reach that character again).
3. Press the [FCN] key to shift the display left by one position, leaving position eight blank.
4. Press the [PRI] key repeatedly to enter the next character, or press the [FCN] key a second time to enter a blank space.
5. Press number keys to enter 0-9 in positions one through seven. The digits start in position seven, then move left.
6. Press the [\#] key to toggle a decimal on or off to the right of the character in position seven. The decimal moves left with the number in position seven as new numbers are entered.
7. To abandon changes, press the [CLR] key, restoring the original label.
8. Press the [ENT] key to store changes and go back to the starting point.

DIGITAL PROGRAMMING

In order to use your DPH as a digital radio, there are several things that you need in order for it to work.

MODE: Must Be D (Digital) or M (Mixed)
NAC=Network Access Code: Essentially a digital "tone." This code will be provided for you, and it is required for digital freqs to work. The code may be either HEX or DECIMAL. MAKE SURE YOU KNOW WHICH ONE: Hand programming requires Decimal inputs.
SQ OP: don't change from default of "Normal"
TG=Talk Group ID: provided for you by management unit -usually talk group 1.

Things to remember:

- DPH radios can be set up with digital and analog frequencies in a single group.
- When transmitting on a digital frequency, key your mic and wait one full second before speaking.
- Digital repeaters may not be set up with a transmission "tail" or "kick-back". An actual voice transmission may be needed to verify contact with the repeater.
- If you know you'll be using digital frequencies, plan ahead- you may have most success programming your radios with the laptop and the BK software.
- You can clone digital frequencies between DPH radios, just like analog frequencies.

NACS

F7E is what you program in if you want to listen in. F7E will listen to any digital signal
F7e is hexadecimal= 3966 is decimal (Hand Programming Mode Requires Decimal)
F7e is a receive nac only
Convert hexadecimal to decimal and vice-versa with the Microsoft calculator in Scientific Mode.

Ensure adequate long-lines by providing helibase with accurate tree heights!

TOWNSHIP/RANGE SYSTEM OF LAND MEASURE

Township Lines run EAST to WEST six miles apart Range Line run NORTH to SOUTH six miles apart

Within each township are 36 sections, each one mile square. Each section contains 640 acres.

6	5	4	3	2	1
7	8	9	10	11	12
18	17	16	15	14	13
19	20	21	22	23	24
30	29	28	27	26	25
31	32	33	34	35	36

Section Numbers in a Typical
Township

Within each section, the land is referred to as half and quarter sections. A one-sixteenth division is called a quarter of a quarter, as in the NW1/4 of the NW1/4.

The descriptions are read from the smallest division to the largest. $\downarrow \downarrow$

NW $1 / 4$ of NW 1/4	NE $1 / 4$ of NH 1/4	$\begin{gathered} \text { NE 14 } \\ =160 \text { acres } \end{gathered}$	
	SE 14 of NW 1/4		
		$\begin{gathered} \text { W } 112 \\ \text { of } \\ \text { SE } 1 / 4 \end{gathered}$	$\begin{gathered} \mathrm{E} 1 / 2 \\ \text { of } \\ \text { SE } 14 \end{gathered}$
$\begin{gathered} \mathrm{S} 112 \\ \text { of } \\ \mathrm{SW} 1,4 \end{gathered}$			

CONVERTING LATITUDE LONGITUDE

BY FAR THE EASIEST WAY TO DO THIS IS WITH A MOBILE APP (AVENZA, MOTION-X, GAIA)

1. Avenza Maps - in the map view, simply click on the coordinates displayed at the bottom center of the screen. All possible coordinate formats will be displayed. Make a selection.
2. Motion X - Menu > Setup > Display > edit "coordinate format"
3. GAIA - Menu > Settings > Coordinate Type

If you do not have that option, do this:

Latitude and Longitude may be shown in three different formats:

FORMAT	WHAT IT LOOKS LIKE	HOW YOU SAY IT (Radio Etiquette)
A. Degrees Decimal Minutes	$48^{\circ} 36.12^{\prime}$	"Four-eight degrees, three six point one two
(Aircraft)	$114^{\circ} 08.12^{\prime}$	minutes."
B. Degrees Minutes Seconds	$48^{\circ} 36^{\prime} 12^{\prime \prime}$	"Four-eight degrees, three six minutes, and
(many maps)	$114^{\circ} 08^{\prime} 12^{\prime \prime}$	one two seconds."
C. Degrees Decimal Degree	48.3612°	"Four-eight point three six one two degrees."
(seldom used)	114.0812°	

To convert Degrees Minutes Seconds to Degrees Decimal Minutes, divide seconds by 60. - Example: $48^{\circ} 20^{\prime} \underline{30^{\prime \prime}} \Rightarrow\left(\underline{30^{\prime \prime}}\right) / 60=.5^{\prime} \Rightarrow 48^{\circ} 20.5^{\prime}$

To convert Degrees Decimal Minutes to Degrees Minutes Seconds, multiply hundredths (i.e. .12) by 60.

- Example: $48^{\circ} 20.5^{\prime} \Rightarrow .5^{\prime} \times 60=30^{\prime \prime} \Rightarrow 48^{\circ} 20^{\prime} 30^{\prime \prime}$
- One degree of latitude or longitude $=60$ minutes ($\left.60^{\prime}\right)$
- One minute of latitude or longitude $=\mathbf{6 0}$ seconds ($60^{\prime \prime}$)
- A 7.5 minute quad covers 7.5 minutes of longitude and 7.5 minutes of latitude

Aviation Datum=WGS 84 Units: Decimal/Minutes (ddd ${ }^{\circ} \mathrm{mm} . \mathrm{mmm}^{\prime}$)

CONVERSION CHARTS

UNITS OF MEASURE	
1 inch	2.54 centimeters
1 foot	. 3048 meters
1 Meter	3.28 feet 39.37 inches
1 Kilometer	. 623 miles 1,093.6 yards 3280.8 ft
1 Chain	66 feet 20.11 meters
1 Acre	10 square chains $208.7 \times 208.7 \mathrm{ft}$ 43,560 sq. feet .405 hectares
1 Mile	5280 feet 80 chains 1.6 kilometers
Township	36 square miles
Section	1 square mile 640 acres

$\mathbf{1}$ CUP	8 ounces
$\mathbf{1}$ PINT	2 Cups
	16 Ounces
$\mathbf{1}$ QUART	4 Cups
	2 Pints
	32 Ounces
	.946 liters
$\mathbf{1}$ GALLON	4 Quarts
	128 Ounces
	3.785 liters
	8.33 lbs

MAP SCALE CONVERSION		
$\begin{aligned} & \text { MAP } \\ & \text { SCALE } \end{aligned}$	1 inch on the map=	1 Mile on the Earth= \qquad inches on map
1:5,000	$\begin{gathered} 416.67 \text { feet } \\ 127.00 \text { meters } \end{gathered}$	12.67
1:10,000	833.33 feet 254.00 meters	6.34
1:12,500	1,041.66 feet 317.00 meters	5.07
1:20,000	1,666.70 feet 508.00 meters	3.17
$\begin{gathered} \text { 1:24,000 } \\ \text { 7.5" Quad } \end{gathered}$	2,000 feet 609.6 meters	2.64
$\begin{gathered} \text { 1:25,000 } \\ \text { 7.5" Quad } \end{gathered}$	2,083.30 feet 635.00 meters	2.53
1:50,000	$\begin{aligned} & \text { 4,166.70 feet } \\ & \text { 1,270.0 meters } \end{aligned}$	1.27
$\begin{aligned} & 1: 62,500 \\ & 15 " \text { Quad } \end{aligned}$	$\begin{gathered} .986 \text { Miles } \\ 5206.1 \text { feet } \\ 1586.8 \text { meters } \end{gathered}$	1.014
1:63,360 Alaska Maps	$5,280.00$ feet 1,609.3 meters	1
1:100,000	$\begin{aligned} & \text { 8,333.30 feet } \\ & 2,540.0 \text { meters } \end{aligned}$. 634
1:250,000	$\begin{aligned} & 20,833.00 \text { feet } \\ & 6,350.0 \text { meters } \end{aligned}$. 253
1:500,000	$\begin{gathered} 41,667.00 \text { feet } \\ 12,700.0 \text { meters } \end{gathered}$. 127

World Magnetic Model - 2017 Magnetic Declination
NOAA National Centers for Environmental Information (NCEI)

AVENZA \& MOBILE MAPPING GUIDE

- Recording Waypoints and Tracks
- These days there are several apps you can use to easily record points and tracks and easily share them via AirDrop (IOS), traditional Bluetooth (Android) or email (IOS \& Android). The following apps have all but replaced the GPS for modern day WFM crewmembers
- Avenza Maps - Full service GPS App with downloadable basemaps (see below).
- Motion-X GPS (IOS only) - Full service GPS App. Needs cell service for basemaps
- GAIA GPS - Full service GPS App with downloadable basemaps. Free as NPS employee
- ArcGIS Collector - Used by IMT's for FOBS-like data collection on large incidents
- Acquiring Maps (Avenza Specific):
- Under the "store" tab, click on the " + " sign at the top right side of the screen
- Click "get a map from the store" to download topos, park and forest maps, etc

1) It's usually best to click "find maps" and filter for "free maps only", OR

- Click on the QR symbol at the top right side of the screen if there's an incident QR, OR
- Go to ftp.nifc.gov/incident_specific_data/ to download maps from large incidents, OR
- For iPhone users, AirDrop a map to your friend

1) Open the map you'd like to share and click on the $\uparrow \equiv$ symbol (bottom right)
2) Click on the symbol (bottom right) to export
3) Use a straightforward "filename", send to "airdrop", select "custom" data and make sure you've checked the box next to the map. Click "apply"
4) Click "Export" (upper right), make sure your AirDrop is turned on, and wait for your friend's AirDrop to show up.
5) *Note: This is also the same process for sharing points and lines in Avenza

- Recording Tracks and Calculating Acreage
- Avenza
- While in the map view where your perimeter will go, click on the "wrench" tool (bottom right)
- Click "record GPS Tracks" and click "Start". Walk the perimeter. Click "Stop" when you've finished the track or completed the perimeter.
- This is the "track" you'll send to whomever needs it. Unfortunately it won't give you acreage directly, so you'll have to

1) Click on the "wrench" tool again
2) Click on "measure" and click on the "protractor" icon to switch to "area calc"
3) Click on the " + " symbol repeatedly as you trace over your perimeter and watch as the acreage is calculated on the fly. Relay this info to whomever needs it.

- GAIA GPS
- Simply record a track, and when you've completed the track, click "convert to area"

Cloud Types

Wind Adjustment for Exposure of
 Fuels to Wind

Fuel Exposure	Fuel Model	Adjustment Factor*
Exposed Fuels	4	0.6
Fuel exposed directly to the wind. No or sparse overstory. Fuel beneath timber that has lost its foliage overstory; fuel	13	0.5
beneath timber near clearings or clear-cuts; fuel on high ridges where trees offer little shelter from the wind.	All others*	0.4
Partially Sheltered Fuels Fuel beneath patchy timber where it is not well sheltered; fuel beneath standing timber at mid-slope or higher on a mountain with wind blowing directly at the slope	All Fuel Models	0.3
Fully Sheltered Fuels Fuel sheltered beneath standing timber on flat or gentle slope or near base of mountain with steep slopes	All Fuel Models	0.2 Open Stands 0.1 Dense Stands

*Fuel Models 2 and 7 are usually partially sheltered Fuel models 8,9 and 10 are usually fully sheltered

[^0]
RATE OF SPREAD ESTIMATOR

Spread distance (ft)					Use this chart as an aid to estimate rate of spread Here's how:
1	3	5	10		
Time in Minutes(') and Seconds(')				ROS ch/hr	1. Measure out 1, 3, 5 or 10 feet. Mark distance with two points. 2. Time fire as it spreads between your two points and record this time. 3. Using the appropriate spread distance column ($1,3,5$ or 10), place your time on the sheet between two times listed, your "bracketed" times. 4. Move to the right with the bracket times. This is your ROS range.
	10'55"	18'10"		0.25	
1'49"	5'27"	$\begin{aligned} & 9 ' 05 " \\ & 4 ' 33^{\prime \prime} \end{aligned}$	$\left\|18^{\prime} 10^{\prime \prime}\right\|$	0.5	
55"	2'44"		9'05"	1	
36"	1'49"	3'02"	6'04"	1.5	
27"	1'22"	$\begin{aligned} & \text { 2'16" } \\ & \text { 1'31" } \end{aligned}$	$\begin{aligned} & 4^{\prime} 33^{\prime \prime} \\ & 3^{\prime} 02 \text { ' } \end{aligned}$	2	Time Key $1^{\prime} 49^{\prime \prime}=1$ minute and 49 seconds $36^{\prime \prime}=36$ seconds
18"	55"			3	
14"	41"	1'08"	2'16"	4	
11"	33"	55"	1'49"	5	backing fire burning in light ponderosa needle cast. You measure out 3 feet, and place two stones at each of the points. You time the fire as it moves between the stones. In this case, say the fire takes 1 minute 6 seconds ($1^{\prime} 6^{\prime \prime}$) to move 3 feet. Looking at the 3 column, you move down until you see two times which bracket our time: $1^{\prime} 22^{\prime \prime}$ and $55^{\prime \prime}$. You then scroll right and see that the rate of spread is between 2 and 3 chains per hour.
$9{ }^{\prime \prime}$	27"	45"		6	
8"	23"	39"	1'18"	7	
$7{ }^{\prime \prime}$	20"	34"	1'08"	8	
6"	18"	30"	1'01"	9	
5"	16"	27"	55"	10	
4"	11"	18'	36"	15	
3"	8"	14"	27"	20	
2"	7"	11"	22"	25	
2"	5"	9"	18"	30	
2"	5"	8"	16'	35	
1"	4"	7'	14"	40	1 Height
1"	3"	5"	11"	50	
1	3	5	10		Flame Zone Depth--------->
	ad	ance			

FIRE BEHAVIOR TERMINOLOGY

Smoldering - no flame, barely spreading
Creeping - low flame, slow spread
Running - definite flames, rapid spread in surface fuels with well-defined head
Torching - fire runs up ladder fuels into crowns of individual trees with no crown to crown spread
Crowning - fire spreading from crown to crown, either dependent or independent of surface fire
Flame length - length from base to tip, not vertically
Rate of spread - chains per hour = feet per minute
Ground fire - fire burning in organic material below surface litter
Surface fire - fire that burns surface litter, other loose debris of the forest floor and small vegetation
Backing - fire spreading against the wind, or spreading on level or downward-sloping ground with no wind
Flanking - fire spreading perpendicular to the wind
Backfire - fire used as an indirect attack method to stop, slow or turn a wildfire
Burnout - fire set to fuels inside the control line, to strengthen line, as a part of line construction
Flare-up - any sudden acceleration of fire spread or intensification of the fire. A flare-up is of relatively shortduration and doesn't radically change existing control plans.
Spot Fire - fire outside the perimeter of the main fire started by flying, or rolling sparks or embers

SLING PSYCHROMETER USE

The following are instructions for determining wet and dry bulb temperatures using the sling psychrometer. These instructions are based on those from page 259 of the S-290 Instructors Manual. Several additional comments have been added.

1. Stand in a shaded, open area away from objects that might be struck during whirling. If in open country, use your body shade to shade the psychrometer. If possible, take your weather observations over a fuel bed that is representative of the fuels that the fire is burning in.
2. If your sling has been in your pack, you may need to hang it in a tree, in the shade, to let it adjust to the outside air temperature.
3. Face the wind to avoid influence of body heat/moisture on the thermometers.
4. Saturate the wick of the wet bulb with clean, mineral free water (distilled). Never touch the wick.
5. Ventilate the thermometers by whirling at full arm's length. Your arm should be parallel to the ground. Whirl for 1 minute.
6. Note the wet bulb temperature. Whirl for another 40 or 50 times and read again. If the wet bulb is lower than the first reading, continue to whirl and read until it will go no lower. Read and record the lowest point. If the wet bulb is not read at the lowest point, the calculated relative humidity will be too high.
7. Read the dry bulb immediately after the lowest wet bulb reading is obtained. If the wet bulb reading increases, you've allowed the wick to dry out. Wet the wick and begin again.
8. Determine the relative humidity from the tables.

Important Tips:

1. Never sling weather in the black
2. Insure a quality sling (clean wick, non-separated mercury/liquid, clean water, etc)
3. Always use the correct elevation chart for RH \& DP.

FUEL MOISTURE SAMPLING

General Guidelines

- Record site name, date, time, observer name, observed weather, general site description
- DO NOT collect samples if water drops or dew are present on samples
- Keep samples in a cool and dry location
- Seal containers with tape that will not leave residue. Electrical works best

Dead Fuels (1-hr, 10-hr, 100-hr, \& 1000-hr fuels)

- Samples should not be attached to live trees or shrubs
- Avoid decayed samples that crumble or splinter when rubbed
- Collect samples from several different plants
- Ensure container is $3 / 4$ full to avoid overfilling/spilling between measurements
- Do not collect buried samples
- Pick samples of different size within the time lag class
- Recently fallen material should be avoided, especially for the larger size classes
- Remove all lichen, moss, and very loose bark from sample
- 1000-hr fuels should be collected at least 1 foot from the end of the downed log, and should ideally be cut with a handsaw, rather than a chainsaw. Storage of the "cookie" should be in an airtight container and "wet" weight should be read as soon as possible. An auger/drill can also be used to collect 1000-hr woodchips, which can be stored in a standard fuel tin.

Duff and Soil

- Remove all soil and live tree or plant roots from sample
- Avoid any soil particles in duff samples and vice versa

Litter

- Collect only un-compacted dry litter from both sunny and shady areas

Live Fuels (live woody shrub leaves and tree needles/leave)

- Only collect foliage and very small twigs and remove flowers, seeds, nuts, or berries
- Pack containers loosely to avoid spillage but ensure container is $3 / 4$ full
- Include stems of herbaceous plants
- Replace lid on container immediately after collecting sample and seal with electrical tape

Drying Samples:

-Preheat drying oven between $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)-100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$. Be sure to note temp used.
-Place sample cans with closed lids on scale and record "wet" weights (be sure to remove tape first)
-Remove lid just prior to placing in oven. If material is lost, re-weigh sample
-Dry sample for 24 hours (very wet samples 48 hours)
-Replace Lids immediately after sample is removed from oven and weigh
-Calculate fuel moisture using the following formula:

$$
\frac{\text { wet weight of sample }- \text { dry weight of sample }(100)}{\text { dry sample weight }- \text { container tare weight }}=
$$

A	B	C	D	E	F
Gross Weight		Container Tare Weight	Water Weight	Dry Weight	\% Moisture
Wet	Dry				
		Calculation Summary A-B = D B-C =			
(D/E) $\mathbf{x ~ 1 0 0 ~ = ~ F ~}$					

Live Fuel Moisture Estimates

Guidelines for estimating live fuel (foliage) moisture content. Live fuel moisture is required for fuel models $2,4,5,7$, and 10 . If data are unavailable for estimating live fuel moisture the following rough estimates can be used.

Stage of vegetative development	Moisture content
Fresh foliage, annuals developing, early in growing cycle	300%
Maturing foliage, still developing with full turgor	200%
Mature foliage, new growth complete and comparable to older perennial foliage	100%
Entering dormancy, coloration starting, some leaves may have dropped from stem	Less than 30\%, treat as a dead fuel
Completely cured	

FUEL SIZE CLASSES - woody debris

Dead woody class		Piece diameter
		inches (cm$)$
DWD FWD	1 -hr	$0-0.25(0-0.6)$
	$10-\mathrm{hr}$	$0.25-1.0(0.6-2.5)$
	$100-\mathrm{hr}$	$1.0-3.0(2.5-8.0)$
CWD	1,000 -hr and grealer	3.0 and greater (8.0 and greater)

SCOTT AND BURGAN FUEL MODELS (2005) - "THE NEW 40"

- Determine the general fire-carrying fuel type (grass, grass/shrub, shrub, timber/understory, timber litter, slash).
-Determine general climate for your area (arid, semi-arid, sub-humid, humid). TIMBER LITTER Fuel models do not have climate groupings.
- Match fuel model description (fuel depth, fuel load, fuel continuity) with fuels of interest.

1. Nearly pure grass and/or forb type (Grass):

$>$ Arid to semiarid climate (rainfall deficient in summer). Extinction moisture content is 15\%. GR1-Grass is short, patchy and possibly heavily grazed. Spread rate moderate; flame length low. GR2-Moderately coarse continuous grass, average depth about 1ft. Spread rate high; flame length moderate. GR4-Moderately coarse continuous grass, average depth about 2 ft . Spread rate very high; flame length high. GR7-Moderately coarse continuous grass, average depth about 3ft. Spread rate very high; flame length very high.
$>$ Subhumid to humid climate (rainfall adequate in all seasons). Extinction moisture content is 30-40\%.
GR1-Grass is short, patchy, and possibly heavily grazed. Spread rate moderate; flame length low. GR3-Very coarse grass, average depth about 2 ft . Spread rate high; flame length moderate.
GR5-Dense, coarse grass, average depth about 1-2ft. Spread rate very high; flame length high. GR6-Dryland grass about 1-2 ft tall. Spread rate very high; flame length very high.
GR8-Heavy, coarse, continuous grass $3-5 \mathrm{ft}$ tall. Spread rate very high; flame length very high. GR9-Very heavy, coarse, continuous grass 5-8 ft tall. Spread rate extreme; flame length extreme.
2. Mixture of grass and shrub, up to about 50 percent shrub coverage (Grass-Shrub)
$>$ Arid to semiarid climate (rainfall deficient in summer). Extinction moisture content is 15%. GS1-Shrubs are about 1 ft high, low grass load. Spread rate moderate; flame length low. GS2-Shrubs are 1-3 ft high, moderate grass load. Spread rate high; flame length moderate.
$>$ Subhumid to humid climate (rainfall adequate in all seasons). Extinction moisture content is $30-40 \%$. GS3-Moderate grass/shrub load, average grass/shrub depth < 2 ft . Spread rate high; flame length moderate. GS4-Heavy grass/shrub load, depth greater than 2 ft . Spread rate high;flame length very high.

3. Shrubs cover at least 50 percent of the site; grass sparse to nonexistent (Shrub)

$>$ Arid to semiarid climate (rainfall deficient in summer). Extinction moisture content is 15%.
SH1-Low shrub fuel load, fuelbed depth about 1 ft ; some grass may be present. Spread rate very low; flame length very low.
SH2-Moderate fuel load (higher than SH1), depth about 1 ft , no grass fuel present. Spread rate low to moderate; flame length low to moderate.
SH5-Heavy shrub load, depth 4-6 ft. Spread rate very high; flame length very high.
SH7-Very heavy shrub load, depth 4-6 ft. Spread rate lower than SH5, but flame length similar. Spread rate high; flame length very high.
$>$ Subhumid to humid climate (rainfall adequate in all seasons). Extinction moisture content is 30-40\%
SH3-Moderate shrub load, possibly with pine overstory or herbaceous fuel, fuel bed depth 2-3 ft. Spread rate low; flame length low.
SH4-Low to moderate shrub and litter load, possibly with pine overstory, fuel bed depth about 3 ft . Spread rate high; flame length moderate.
SH6-Dense shrubs, little or no herb fuel, depth about 2 ft . Spread rate high; flame length high.
SH8-Dense shrubs, little or no herb fuel, depth about 3 ft . Spread rates high; flame length high.
SH9-Dense, finely branched shrubs with significant fine dead fuel, about 4-6 ft tall; some herbaceous fuel may be present. Spread rate high, flame length very high.

4. Grass or shrubs mixed with litter from forest canopy (Timber-Understory)

> Semiarid to Subhumid climate. Extinction moisture content is 20%.
TU1-Fuelbed is low load of grass and/or shrub with litter. Spread rate low; flame length low.
TU4-Fuelbed is short conifer trees with grass or moss understory. Spread rate moderate; flame length moderate.

TU5-Fuelbed is high load conifer litter with shrub understory. Spread rate moderate; flame length moderate.
> Humid climate. Extinction moisture content is 30%.
TU2-Fuelbed is moderate litter load with shrub component. Spread rate moderate; flame length low.
TU3-Fuelbed is moderate litter load with grass and shrub components. Spread rate high; flame length moderate.

5. Dead and down woody fuel (litter) beneath a forest canopy (Timber Litter)

> Fuelbed is recently burned but able to carry wildland fire.
TL1-Light to moderate load, fuels 1-2 in deep. Spread rate very low; flame length very low.
> Fuelbed composed of broadleaf (hardwood) litter.
TL2-Low load, compact. Spread rate very low; flame length very low.
TL6-Moderate load, less compact. Spread rate moderate; flame length low.
TL9-Very high load, fluffy. Spread rate moderate; flame length moderate.
> Fuelbed composed of long-needle pine litter.
TL8-Moderate load and compactness may include small amount of herbaceous load. Spread rate moderate; flame length low.
> Fuelbed not composed broadleaf or long-needle pine litter.
TL4-Moderate load, includes small diameter downed logs. Spread rate low; flame length low.
TL7-Heavy load, includes larger diameter downed logs. Spread rate low; flame length low.
TL3-Moderate load conifer litter. Spread rate very low; flame length low.
TL5-High load conifer litter; light slash or mortality fuel. Spread rate low; flame length low.
TL9-Very high load broadleaf litter; heavy needle-drape in otherwise sparse shrub layer. Spread rate moderate; flame length moderate.

6. Activity fuel (Slash) or debris from wind damage.

> Fuelbed is activity fuel.

SB1-Fine fuel load is 10-20 tons/acre, weighted toward fuels 1-3 in diameter class, depth is $<1 \mathrm{ft}$. Spread rate moderate; flame length low.
SB2-Fine fuel load is 7-12 tons/acre, evenly distributed across 0-0.25
SB3-Fine fuel load is $7-12$ tons/acre, weighted toward 0 to 0.25 in diameter class, depth is $>1 \mathrm{ft}$. Spread rate high; flame length high.
> Fuelbed is blowdown
SB2-Blowdown is scattered, with many trees still standing. Spread rate moderate; flame length moderate.
SB3-Blowdown is moderate, trees compacted to near the ground. Spread rate high; flame length high.
SB4-Blowdown is total, fuel bed not compacted, foliage still attached. Spread rate very high; flame length very high.

7. Insufficient wildland fuel to carry wildland fire under any condition (Nonburnable)

NB1-Urban or suburban development; insufficient wildland fuel to carry wildland fire.
NB2-Snow/ice.
NB3-Agricultural field, maintained in nonburnable condition.
NB8-Open water.
NB9-Bare ground.

ANDERSON FUEL MODELS - "THE ORIGINAL 13"

Primary carrier of the fire is GRASS

FM1-Grass is fine structured, generally below knee level, and cured primarily. Grass is essentially continuous. Spread rate moderate; flame length low. Grasslands, savanna, grass tundra
FM2-Grass is usually under an open timber or brush overstory. Litter from overstory is involved, but grass carries the fire. Expected ROS is < FM1 and intensity is < FM3. Spread rate moderate; flame length moderate. Open shrub land and pine stands, some pinon-juniper

FM3-Grass is coarse structured, above knee level (average about 3ft. deep) and can be difficult to walk through. $1 / 3$ of stand is dead or cured. Spread rate high; flame length high.
Primary Carrier of the fire is BRUSH or litter beneath the BRUSH.
FM4-Brush is head height (>6ft.), with heavy loadings of dead woody fuel. Fire may involve foliage, live and dead woody material and canopy. Spread rate very high; flame length very high. Mixed chapparal, high pocosins, pine barrens of New Jersey, closed jack pine stands of north central states
FM5-Brush is about 2ft. high, with light loading of brush litter underneath. Litter may carry fire, especially at low wind speeds. Spread rate low to moderate; flame length low to moderate Young green stands with little or no deadwood. Laurel, vine maple, alder, manzanita
FM6-Live fuels are absent or sparse. Brush averages 2 to 4 ft . high. Brush requires moderate winds to carry fire. Spread rate high (with wind); flame length high. FM6 may not predict rate of spread accurately in mature PJ or taller oak brush. Chapparal, chamise, oak brush, low pocosin, Alaskan black spruce, taiga, shrub tundra, PJ at high winds (20 mph at 20 ' level)
FM7-Fires burn through the surface and shrub strata with equal ease and can occur at higher dead fuel moisture contents due to the flammability of live foliage and other live material. Stands of shrubs are generally between 2 and 6 ft . high. Spread rate high; flame length high. Palmetto-gallberry understory with pine overstory, Alaskan black spruce with shrub

Primary Carrier of the fire is LITTER beneath a TIMBER stand.
FM8-Dead foliage is tightly compacted, short needle (2 in. or less) conifer or hardwood litter. Spread rate low; flame length low with occasional jackpot of heavy fuels increasing intensity. White and lodgepole pine, spruce, true firs, larches
FM9-Dead foliage litter is loosely compacted long needle pine or hardwoods. Spread rate moderate; flame length moderate. Concentrations of dead-down woody material will contribute to possible torching out of trees, spotting, and crowning. Closed stands of long needle pine- Jeffrey ponderosa, and southern pine plantations
FM10-There is a significant amount of larger fuels with attached branches and twigs, or has rotted enough that it is splintered and broken. The larger fuels are fairly well distributed over the area. Some green fuel may be present. Overall depth of the fuel is primarily below knees, but some fuel may be higher. Any forest type may be considered if heavy down material is present. Crowning out, spotting, and torching of individual trees are more frequent in this fuel situation, leading to potential fire control difficulties. Spread rate moderate to high; flame length high. Insect- or disease-ridden stands, windthrown stands, overmature situations with deadfall, and aged light thinning or partial-cut slash

Primary Carrier of the fire is LOGGING SLASH.
FM11-Slash is not continuous. Needle litter or small amounts of grass or shrubs must be present to carry the fire, but primary carrier is still slash. Live fuels are absent or do not play a significant role in fire behavior. Spread Rate low; flame length moderate. Light partial cuts or thinning ops in mixed conifer or hardwood stands and southern pine harvests
FM12-Slash generally covers the ground (heavier loadings than FM11), though there may be some bare spots or areas of light coverage. Average slash depth is about 2 ft . Slash is not excessively compacted. Approximately $1 / 2$ of the needles may still be on the branches but are not red. Live fuels are absent, or are not expected to affect fire behavior. Spread rate low; flame length moderate to high. Heavily thinned conifer stands, clear cuts and med to heavy partial cuts
FM13-Slash is continuous or nearly so (heavier loadings than FM12). Slash is not extremely compacted and has an average depth of 3 ft . Approximately $1 / 2$ of the needles are still present and are red, or all of the needles are still on the branches but are green. Live fuels are not expected to influence fire behavior. Spread rate low; flame length high. Clear cuts and heavy partial cuts in mature or over mature stands where slash is dominated by >3" material or load like FM12 but with "red" needles still attached

Elevations between 0 and 500 feet

Elevations between 0 and 500 feet

Elevations between 0 and 500 feet

Wet Bulb Temperatures, 58 to 95 F

Elevations between 501 and 1,900 feet

Elevations between 501 and 1,900 feet

Elevations between 501 and 1,900 feet

Elevations between 501 and 1,900 feet

Wet Bulb Temperatures, 58 to 95 F

Elevations between 1,901 and 3,900 feet

Elevations between 1,901 and 3,900 feet

Elevations between 1,901 and 3,900 feet

Elevations between 1,901 and 3,900 feet

Net Bulb Temperatures, 57 to 90 F

Elevations between 3,901 and 6,100 feet

Elevations between 3,901 and 6,100 feet

\pm

	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60						Wet Bulb															
	-19	-5	4	11	16	21	24	28	31	34	37	39	41	43	46	48	49	51	53	55	56	58	59																					
61	3	7	10	14	17	21	24	28	32	36	40	44	48	52	57	61	66	70	75	80	85	90	95						Temperatures															
62	-33	-11	0	8	14	19	23	26	30	33	35	38	40	43	45	47	49	51	52	54	56	57		61	62																			
	1	5	8	11	15	18	22	26	29	33	37	41	45	49	53	57	62	66	71	75	80	85	90	95						38 to 79 F														
	63	-19	-5	4	11	16	21	25	28	31	34	37	39	42	44	46	48	50	52	54	55	57	58	60	62	63																		
	63	3	6	9	13	16	20	23	27	30	34	38	42	46	50	54	58	62	67	71	76	80	85	90	95	63				(Read Down)														
	64	-34	-11	0	8	14	19	23	27	30	33	36	38	41	43	45	47	49	51	53	55	56	58	60	61	63	64																	
		1	4	8	11	14	17	21	24	28	31	35	39	43	46	50	54	59	63	67	72	76	81	85	90	95																		
		65	-19	-4	5	11	17	21	25	29	32	35	37	40	42	44	47	49	50	52	54	56	57	59	61	62	64	65					DP		DP									
		65	3	6	9	12	15	19	22	25	29	32	36	40	43	47	51	55	59	63	68	72	76	81	86	90	95	65																
		66	-33	-10	1	8	14	19	23	27	31	34	36	39	41	44	46	48	50	52	53	55	57	58	60	62	63	65	65								RH							
		66	1	4	7	10	13	16	20	23	26	30	33	37	40	44	48	52	56	60	64	68	72	77	81	86	90	95					RH											
			67	-19	-4	5	12	17	22	26	29	32	35	38	40	43	45	47	49	51	53	55	56	58	60	61	63	64	66 67 95															
			67	3	6	8	11	15	18	21	24	27	31	34	38	41	45	49	52	56	60	64	68	73	77	81	86	90																
			68	-32	-10	1	9	15	20	24	28	31	34	37	39	42	44	46	48	50	52	54	56	57	59	61	62	64	65	67	68													
				1	4	7	10	13	16	19	22	25	28	32	35	39	42	46	49	53	57	61	65	69	73	77	82	86	91	95														
				69	-18	-3	6	12	18	22	26	30	33	36	38	41	43	45	48	50	52	53	55	57	59	60	62	63	65	66	68	69												
				69	3	5	8	11	14	17	20	23	26	29	33	36	39	43	46	50	54	57	61	65	69	73	78	82	86	91	95	69												
				70	-31	-9	2	10	15	20	25	28	32	35	37	40	42	45	47	49	51	53	55	56	58	60	61	63	64	66	67	69	70											
					1	4	7	9	12	15	18	21	24	27	30	33	37	40	44	47	51	54	58	62	66	70	74	78	82	86	91	95												
					71	-17	-3	6	13	18	23	27	30	33	36	39	41	44	46	48	50	52	54	56	57	59	61	62	64	65	67	68		71										
					71	3	5	8	11	13	16	19	22	25	28	31	34	38	41	44	48	51	55	58	62	66	70	74	78	82	87	91		71										
					72	-29	-8	3	10	16	21	25	29	32	35	38	41	43	45	47	49	51	53	55	57	59	60	62	63	65	66	68	69	71	72									
							4	6	9	12	14	17	20	23	26	29	32	35	38	42	45	48	52	55	59	63	66	70	74	78	83	87	91	95										
						73	-15	-2	7	14	19	23	27	31	34	37	40	42	44	47	49	51	53	55	56	58	60	61	63	64	66	67	69	70	72	73								
						73	3	5	8	10	13	16	18	21	24	27	30	33	36	39	42	46	49	52	56	59	63	67	71	75	79	83	87	91	96	73								
						74	-26	-7	4	11	17	22	26	30	33	36	39	41	44	46	48	50	52	54	56	58	59	61	62	64	66	67	68	70	71	73	74							
							1		6	9	11	14	17	19	22	25	28	31	34	37	40	43	46	50	53	56	60	64	67	71	75	79	83	87	91	96	74							
						75	-52	-14	0	8	15	20	24	28	32	35	38	40	43	45	47	49	51	53	55	57	59	60	62	64	65	67	68	70	71	72		75						
						75		3	5	7	10	12	15	18	20	23	26	29	31	34	37	41	44	47	50	53	57	60	64	68	71	75	79	83	87	91	96	75						
Dry Bulb							76	-24	5	5	12	18	22	27	30	33	36	39	42	44	47	49	51	53	55	56	58	60	62	63	65	66	68	69	71	72	73	75	76					
Temperatures								-43	-12	1	9	115	13	16	19	21	24	27	29	32	35	38	41	44	47	51	54	57	61	64	68	72	75	79	83	87	91	74	76					
							77		3	5	7	10	12	14	17	19	22	25	27	30	33	36	39	42	45	48	51	55	58	61	65	68	72	76	80	83	87	92	96	77				
61 to 80 F								78	-21	-4	6	13	19	23	27	31	34	37	40	43	45	47	49	51	53	55	57	59	61	62	64	65	67	68	70	71	73	74	75	77	78			
(Read Across)								79	$\begin{array}{\|r\|} \hline-36 \\ \hline-1 \\ 1 \\ \hline \end{array}$	-10	2	8	116	13	15	18	20	23	26	28	31	34	37	40	42	46	49	52	55	58	62	65	69	72	76	80	84	88	92	96	78	79		
											5	7	9	12	14	16	19	21	24	26	29	32	35	37	40	43	46	49	52	6	59	62	66	69	73	76	80	84	88	92	96			
									80	-18	-2	7	14	20	24	28	32	35	38	41	43	46	48	50	52	54	56	58	60	61	63	65	66	68	69	71	72	73	75	76	77	79		
										2	4	6	8	10	13	15	17	20	22	25	27	30	32	35	38	41	44	47	50	53	56	59	63	66	69	73	77	80	84	88	92	96		

Elevations between 3,901 and 6,100 feet

Elevations between 3,901 and 6,100 feet

Wet Bulb Temperatures, 55 to 90 F
(Read Down

Elevations between 6,101 and 8,500 feet

Elevations between 6,101 and 8,500 feet

Elevations between 6,101 and 8,500 feet

46

42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70

Dry Bulb
Temperatures 71 to 90 F
(Read Across)

\qquad

Elevations between 6,101 and 8,500 feet
Wet Bulb Temperatures, 50 to 85 F

		51	152	5354	5455	56	57	5758	859	5960													73								82	838	8485
		${ }^{-25}$-5	$5{ }^{5} 1$	$13{ }^{19}$	19	28	32	3235	$5{ }^{38}$	38.41	414	346	46	50	53	55	57	58	${ }^{60}$	62	64	65	67	68	70	7173	374	76	7	78		8	82
		$1{ }^{2}$	24			10	12	1214	416	1617	17.19	91	21.23	25	27	29	31	34	436	38	40	43	45	48		5356			${ }^{64}$		70	73	76
		${ }^{-44}-\frac{11}{2}$	${ }_{3} 1$	10 17 5 17	17 6 22 6 8	${ }_{10}^{27}$	7 10	$\begin{array}{lll}30 \\ 11 & 13 \\ 14\end{array}$	34 37 3 15	${ }^{37} 154$	${ }_{16}^{40} 43$	$\begin{aligned} & 3 \\ & 8 \\ & 8 \end{aligned} \frac{25}{45}$	$\begin{aligned} & 45 \\ & 42 \\ & 28 \end{aligned} \frac{48}{48}$	$\begin{aligned} & 88 \\ & 824 \\ & 20 \end{aligned}$	$\begin{aligned} & 0 \\ & 4 \\ & 4 \\ & 52 \\ & \hline 52 \end{aligned}$	54	$\begin{aligned} & 4 \\ & 88 \\ & 8 \end{aligned} \frac{56}{36}$	$\begin{aligned} & 6 \\ & 60 \\ & 0 \end{aligned}{ }_{32}$	8 24 34	${ }^{61}$		$\begin{aligned} & 3 \\ & 9 \\ & 9 \\ & 41 \\ & \hline 15 \\ & \hline \end{aligned}$	5	析 $\begin{aligned} & 68 \\ & 46\end{aligned}$	70 48					$\left.\begin{aligned} & 78 \\ & 78 \end{aligned} \right\rvert\,$	$\begin{aligned} & 39 \\ & 4 \\ & 467 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 81 \\ 70 \end{array} \mathbf{7}_{73}$	$\begin{aligned} & 82 \\ & 73 \\ & 76 \\ & 76 \end{aligned}$
		93	$8{ }^{-2}$		15	25	529	2933	336	3639			44							61			66	69	69					78		81	92
				12																				44	46	4951	154	5				67	70.73
			${ }_{2}$	${ }_{5}^{12}$	5	${ }_{8}^{23}$	${ }^{28}$	${ }_{9}{ }^{28} 11$	$1{ }^{13}$	13					${ }_{2} 2$								${ }_{40}^{66}$	${ }_{42}^{67}$	${ }_{44}^{69}$	${ }^{70} 77$		${ }^{75}$	$\begin{array}{\|l} 76 \\ 57 \\ \hline \end{array}$	$\begin{gathered} 78 \\ 59 \\ \hline \end{gathered}$		${ }^{80} 5{ }_{6}^{80}$	82 68 68 71 71
		95	5		10	22	26	2630	034	3437	3740		4345	548	50			56		32		64	65	67	69	70					79	80	
		96	${ }_{1}^{22}$	${ }_{4}^{7}$	7 4 14	${ }_{6}^{20}$	${ }_{6}^{25}$	${ }_{8}^{25}{ }_{9}^{29}$	${ }_{9}^{9}{ }_{11}^{33}$	${ }^{33} 112$			$\begin{aligned} & 46 \\ & \hline 16 \\ & 17 \end{aligned}$							$\begin{aligned} & 88 \\ & 880 \\ & 80 \\ & \hline 0 \end{aligned}$		$\begin{array}{\|l\|} \hline 63 \\ 34 \end{array}$	$\begin{array}{\|l\|} \hline 65 \\ 36 \end{array}$	8	41	$\begin{aligned} & 70 \\ & 43 \\ & 45 \\ & 45 \end{aligned}$		$\frac{74}{70}$			$\begin{aligned} & 78 \\ & 57 \end{aligned}$	$\frac{80}{80} 6$	
									11						49								64	66	${ }_{6} 81$								
					3	6	2	${ }^{2} 8$	910	1012										2			35	37	${ }^{6}$	4143		48			55	${ }_{6}$	${ }_{60}{ }^{63}$
			98	0	0		${ }^{12}$	22	630	30	12	40	40	46	48	50		55	55	59	61		64	66	-7	69					,		
	DP									911	11.12		${ }^{4}$			20		24	26	27				35	37	3941		46	48		53	5	58.60
DP				(rrr	$\stackrel{-5}{2}$	$\begin{array}{\|c\|} \hline 14 \\ 4 \\ \hline \end{array}$	${ }_{4}^{4} 20$	20 6 25	${ }_{7}^{2}{ }_{9}^{29}$	$\begin{gathered} 29 \\ 9 \\ 9 \end{gathered}$													$\begin{aligned} & 64 \\ & 32 \\ & 32 \end{aligned}$		$\begin{array}{\|l\|} \hline 67 \\ 36 \\ \hline \end{array}$						3	$\begin{array}{\|l\|l\|} \hline 79 \\ 53 & 80 \\ \hline 18 \end{array}$	
					10	11		18	28	28													63	65	67								
					1			,	8	89														${ }_{32}$	34			42		45	49	515	
RH	RH			01		${ }_{3}$	- 16	[16	${ }_{6}^{22} 8$	26 7												$\begin{array}{\|l\|} \hline 61 \\ 27 \\ \hline \end{array}$	$\begin{array}{\|c} 63 \\ 29 \\ 29 \end{array}$	$\begin{array}{\|l\|} \hline 65 \\ 31 \\ \hline \end{array}$		$\begin{aligned} & 68 \\ & 35 \\ & 37 \\ & 37 \end{aligned}$		$\begin{aligned} & 73 \\ & \hline 14 \end{aligned}$			$\begin{aligned} & 77 \\ & 47 \\ & \hline \end{aligned}$	$\left[\begin{array}{l} 49 \\ 49 \\ 50 \end{array}\right.$	$\begin{array}{\|l\|l\|} \hline 800 \\ 52 \\ 50 & 54 \\ \hline \end{array}$
				$2{ }^{-29}$	${ }^{29}$-4	${ }^{6}$	14	14	25	25.	29	11	,	43	45	18	50	5	5	,		6	${ }^{2}$	${ }^{64}$	66	6869		72	${ }^{74}$			78.8	
								$4{ }^{4} 5$												23											45	47.5	
				103		2	11	$\begin{array}{ll}11 \\ 4 & 18 \\ 4 \\ 5\end{array}$	${ }_{5}^{8}{ }^{23}$	${ }_{6}^{23} 7$			$\begin{aligned} & 36 \\ & 10 \\ & 11 \end{aligned}$		$\begin{array}{l\|l\|} \hline & 45 \\ \hline \end{array}$					$\begin{aligned} & 56 \\ & 26 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 60 \\ 25 \\ \hline \end{array}$	$\begin{aligned} & 62 \\ & 26 \\ & \hline 2 \end{aligned}$	$\begin{aligned} & 64 \\ & 28 \\ & 28 \end{aligned}$	66			$\frac{72}{77}$			$\begin{aligned} & 76 \\ & 43 \end{aligned}$	$\begin{aligned} & 78 \\ & 46 \\ & 48 \\ & 48 \end{aligned}$	48
						-2	-	916	622	2227	$27{ }^{31}$	35	35	84	44	46	49	95	54	56		60	62	63		67.68		72	73	75		-	30
						2	2	3		57												24		27							42	444	
				105		-6	6	6 14 3 14	$4{ }_{4}^{20}$	20	${ }_{6}^{25}$	${ }_{7}{ }_{9}^{33}$	${ }_{10}^{37}$	${ }_{11}^{40}$	43	44	$4{ }^{48}$	${ }^{8} 517$	${ }_{7}{ }_{1} 5$	55	${ }^{51}$	${ }_{23}^{59}$	61	63	65	${ }^{69}$		71	73	${ }_{38}^{74}$	${ }^{76}$	${ }_{42}^{77}{ }_{4}^{79}$	${ }^{79} 880$
Dry Bulb															42	45																	
							2	2	,	46	67		89	10	12	13		16		19		22	23	25	26	2830		33			39	4	43
Temperatures					107		1	-2	916	16	22.27	31	313	38	41	44	47	49	${ }^{52}$	54	56	58	60	62	64	66.67	769		72	74	75		80
91 to 109 F							5	75	514	1420			3034	37		43	44	49	951		56		60	62	63	6567	69	70	72	74	75		
								12	23	35	6		8	89	10	12		14		17		20	21	23	24	27	729			34		3	39
						109																											

Elevations between 8,501 and 11,000 feet

Elevations between 8,501 and 11,000 feet

Elevations between 8,501 and 11,000 feet

45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79

FINE DEAD FUEL MOISTURE TABLES

Reference Fuel Moisture (1) + Fuel moisture correction (2E/2S) = Fine Dead Fuel Moisture (3E/3S)

- 1+2E=3E Exposed Fuel Moisture ($<50 \%$ fuels shaded by clouds/canopy)
- 1+2S=3S Shaded Fuel Moisture (>50\% fuels shaded by clouds/canopy)

Before you begin: What time is it? What month is it? B, L or A? (see pg 54)
ReferenceFuel Moisture
Day Time
0800-1959

1	Relative Humidity (\%)																				
Dry Bulb Temp. (F)	O_{4}	${ }_{9}^{5}$	$\begin{gathered} 10 \\ 14 \end{gathered}$	$\left\lvert\, \begin{aligned} & 15- \\ & 19 \end{aligned}\right.$	$\begin{array}{r} 20 \\ 24 \\ \hline \end{array}$	$\begin{array}{\|c} 25 \\ 29 \\ \hline \end{array}$	$\begin{gathered} 30 \\ 34 \end{gathered}$	$\left.\begin{array}{r} 35 \\ 39 \end{array} \right\rvert\,$	$-\begin{array}{r} 40 \\ 44 \end{array}$	$\begin{gathered} 45 \\ 49 \end{gathered}$	$\begin{array}{r} 50 \\ 54 \\ \hline \end{array}$	$\begin{array}{r} 55- \\ 59 \end{array}$	$\begin{gathered} 60 \\ 64 \\ \hline \end{gathered}$	$\begin{array}{r} 65 \\ 69 \end{array}$	$\begin{array}{\|c} 70 \\ 74 \\ \hline \end{array}$	$\begin{gathered} 75 \\ 79 \end{gathered}$	$\begin{array}{r} 80 \\ 84 \\ \hline \end{array}$	$\begin{array}{r} 85- \\ 89 \end{array}$	$\left.\begin{array}{r} 90 \\ 94 \end{array} \right\rvert\,$	$\left.\begin{array}{\|c} 95 \\ 99 \end{array} \right\rvert\,$	100
10-29	1	2	2	3	4	5	5	6	7	8	8	8	9	9	10	11	12	12	13	13	14
30-49	1	2	2	3	4	5	5	6	7	7	7	8	9	9	10	10	11	12	13	13	13
50-69	1	2	2	3	4	5	5	6	6	7	7	8	8	9	9	10	11	12	12	12	13
70-89	1	1	2	2	3	4	5	5	6	7	7	8	8	8	9	10	10	11	12	12	13
90-109	1	1	2	2	3	4	5	5	6	7	7	8	8	8	9	10	10	11	12	12	13
$109+$	1	1	2	2	3	4	4	5	6	7	7	8	8	8	9	10	10	11	12	12	12

Dead Fuel Moisture Content Corrections
Feb. March April Aug. Sept. Oct.

2E		EXPOSED												surface fuels					
		Expo				ded		sth	兂										
		0800 to			1000 to			1200 to			1400 to			1600 to			1800 to		
ASPCT	Slope	B	L	A	B	L	A	B	L	A	B	L	A	B	L	A	B	L	A
N	0-30\%	3	4	5	1	2	3	1	1	2	1	1	2	1	2	3	3	4	5
N	31\%+	3	4	5	3	3	4	2	3	4	2	3	4	3	3	4	3	4	5
	0-30\%	3	4	5	1	2	3	1	1	1	1	1	2	1	2	3	3	4	5
E	31\%+	3	3	4	1	1	1	1	1	1	1	2	3	3	4	5	4	5	6
S	0-30\%	3	4	5	1	2	2	1	1	1	1	1	1	1	2	3	3	4	5
	31\%+	3	4	5	1	2	2	0	1	1	0	1	1	1	2	2	3	4	5
W	0-30\%	3	4	5	1	2	3	1	1	1	1	1	1	1	2	3	3	4	5
	31\%+	4	5	6	3	4	5	1	2	3	1	1	1	1	1	1	3	3	4
$2 S$		SHADED																	
		Shaded				Grea	ter t	an	or eq	ual	050	\% st	hadi	go	f sur	fa	fue		
N	All	4	5	6	4	5	5	3	4	5	3	4	5	4	5	5	4	5	6
E	All	4	5	6	3	4	5	3	4	5	3	4	5	4	5	6	4	5	6
S	All	4	5	6	3	4	5	3	4	5	3	4	5	3	4	5	4	5	6
W	All	4	5	6	4	5	6	3	4	5	3	4	5	3	4	5	4	5	6

May June July

$2 E$		EXPOSED																	
		Exposed - Less than 50\% shading of surface fuels																	
ASPCT	Slope	0800 to			1000 to			1200 to			1400 to			1600 to			1800 to		
		B	L	A	B	L	A	B	L	A	B	L	A	B	L	A	B	1	A
N	0-30\%	2	3	4	1	1	1	0	0	1	0	0	1	1	1	1	2	3	4
	31\%+	3	4	4	1	2	2	1	1	2	1	1	2	1	2	2	3	4	4
E	0-30\%	2	2	3	1	1	1	0	0	1	0	0	1	1	1	2	3	4	4
	31\%+	1	2	2	0	0	1	0	0	1	1	1	2	2	3	4	4	5	6
S	0-30\%	2	3	3	1	1	1	0	0	1	0	0	1	1	1	1	2	3	3
	31\%+	2	3	3	1	1	2	0	1	1	0	1	1	1	1	2	2	3	3
W	0-30\%	2	3	4	1	1	2	0	0	1	0	0	1	0	1	1	2	3	3
	31\%+	4	5	6	2	3	4	1	1	2	0	0	1	0	0	1	1	2	2
$2 S$		SHADED																	
		Shaded - Greater than or equal to 50% shading of surface fuels																	
N	All	4	5	5	3	4	5	3	3	4	3	3	4	3	4	5	4	5	5
E	All	4	4	5	3	4	5	3	3	4	3	4	4	3	4	5	4	5	6
S	All	4	4	5	3	4	5	3	3	4	3	3	4	3	4	5	4	5	6
W	All	4	5	6	3	4	5	3	3	4	3	3	4	3	4	5	4	4	5

Dead Fuel Moisture Content Corrections
Nov. Dec. Jan.

$2 E$		EXPOSED																	
		Expo					-												
		0800 to			$1000 \text { to }$			1200 to			1400 to			1600 to			1800 to		
ASPCT	Slope	B	L	A	B	L	A	B	L	A	B	L	A	B	L	A	B	L	A
N	0-30\%	4	5	6	3	4	5	2	3	4	2	3	4	3	4	5	4	5	6
	31\%+	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
E	0-30\%	4	5	6	3	4	4	2	3	3	2	3	3	3	4	5	4	5	6
	31\%+	4	5	6	2	3	4	2	2	3	3	4	4	4	5	6	4	5	6
S	0-30\%	4	5	6	3	4	5	2	3	3	2	2	3	3	4	4	4	5	6
	31\%+	4	5	6	2	3	3	1	1	2	1	1	2	2	3	3	4	5	6
W	0-30\%	4	5	6	3	4	5	2	3	3	2	3	3	3	4	4	4	5	6
	31\%+	4	5	6	4	5	6	3	4	4	2	2	3	2	3	4	4	5	6
28		SHADED																	
		Shaded - Greater than or equal to 50\% shading of surface fuels																	
N	All	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
E	All	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
S	All	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
W	All	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6

NIGHT TIME FUEL MOISTURE CHARTS

Reference Fuel Moisture
Night Time
2000-0759

	2000-0759																				
	Relative Humidity (\%)																				
Dry Bulb Temp. (F)	${ }_{4}$	9	$\begin{gathered} 10 \\ 14 \end{gathered}$	$\begin{aligned} & 15 \\ & 19 \end{aligned}$	$\begin{array}{r} 20 \\ 24 \\ \hline \end{array}$	$\begin{array}{r} 25 \\ 29 \\ \hline \end{array}$	$\begin{aligned} & 30- \\ & 34 \end{aligned}$	$\begin{array}{r} 35 \\ 39 \\ \hline \end{array}$	$\begin{array}{\|} 40 \\ 44 \\ \hline \end{array}$	$\begin{array}{r} 45 \\ 49 \end{array}$	$\begin{aligned} & 50 \\ & 54 \end{aligned}$	$\begin{aligned} & 55- \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & 69 \end{aligned}$	$\begin{aligned} & 70 \\ & 74 \\ & \hline \end{aligned}$	$\begin{aligned} & 75 \\ & 79 \\ & \hline \end{aligned}$	$\begin{gathered} 80 \\ 84 \end{gathered}$	$\begin{aligned} & 85-1 \\ & 89 \end{aligned}$	$\begin{aligned} & 90 \\ & 94 \end{aligned}$	$\begin{aligned} & 95- \\ & 99 \end{aligned}$	100
10-29	1	2	4	5	5	6	7	8	9	10	11	12	12	14	15	17	19	22	25	25+	25+
30-49	1	2	3	4	5	6	7	8	9	9	11	11	12	13	14	16	18	21	24	25+	25+
50-69	1	2	3	4	5	6	6	8	8	9	10	11	11	12	14	16	17	20	23	25+	$25+$
70-89	1	2	3	4	4	5	6	7	8	9	10	10	11	12	13	15	17	20	23	25+	$25+$
90-109	1	2	3	3	4	5	6	7	8	9	9	10	10	11	13	14	16	19	22	25	$25+$
$109+$	1	2	2	3	4	5	6	6	8	8	9	9	10	11	12	14	16	19	21	24	$25+$

Dead Fuel Moisture Corrections
Night Time
2000-0759

	2000 to			2200 to			2400 to			0200 to			0400 to			0600 to		
Aspect	B	L	A	B	L	A	B	L	A	B	L	A	B	L	A	B	L	A
N \& E	9	1	1	13	1	2	16	2	2	17	1	1	18	1	1	16	2	1
S \& W	9	0	1	14	0	1	16	0	2	17	0	1	18	0	0	9	0	1

	PROBABILITY OF IGNITION TABLE																	
	Shading	Dry Bulb	Fine Dead Fuel Moisture (\%)															
	(\%)	Temperatur	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	Unshaded <50\%	110+	100		80	70	60	60	50	40	40	30	30	20	20	20	20	10
3		100-109	100	90	80	70	60	60	50	40	40	30	30	20	20	20	10	10
		90-99	100	90	80	70	60	50	40	40	30	30	30	20	20	20	10	10
		80-89	100	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10
		70-79	100	80	70	60	60	50	40	40	30	30	20	20	20	10	10	10
		60-69	90	80	70	60	50	50	40	30	30	20	20	20	20	10	10	10
		50-59	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
		40-49	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
		30-39	80	70	60	50	50	40	30	30	20	20	20	10	10	10	10	10
3 S	Shaded >50\%	110+	100	90	80	70	60	50	50	40	40	30	30	20	20	20	10	10
		100-109	100	90	80	70	60	50	50	40	30	30	30	20	20	20	10	10
$\begin{aligned} & \boldsymbol{O} \\ & \underset{\sim}{1} \\ & \underset{\square}{\square} \\ & \hline \end{aligned}$		90-99	100	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10
		80-89	100	80	70	60	60	50	40	40	30	30	20	20	20	10	10	10
		70-79	90	80	70	60	50	50	40	30	30	30	20	20	20	10	10	10
		60-69	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
		50-59	90	80	70	60	50	40	40	30	30	20	20	20	10	10	10	10
		40-49	90	80	60	50	50	40	30	30	30	20	20	20	10	10	10	10
		30-39	80	80	60	50	50	40	30	30	20	20	20	10	10	10	10	10

Determining A, L, B For Fine Dead Fuel Moisture Calculations

B - Weather observations are taken between 1,000' and 2,000' ABOVE the fire behavior observations/projections.

L - Weather observations are taken between 1,000 above and 1,000' below or' Level with the fire behavior observations/projections.

A - Weather observations are taken between 1,000' and 2,000' BELOW the fire behavior observations/projections.

The question is simple: "Where is the Fire?" Is the fire $A B O V E$ your $W X$ site? If so, use \boldsymbol{A}

Is the Fire BELOW your WX site? If so, use 8

END OF PAY PERIOD

2018 PAYROLL SCHEDULE

holidays

FEBRUARY

MAY

JUNE

AUGUST

SEPTEMBER

OCTOBER

NOVEMBER

S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

DECEMBER

S	M	T	W	T	F	S
						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	31					

Dept. Of Agriculture, USFS Payroll Calendar

PAY PERIOD CALENDAR 2018

Dept. Of Agriculture, USFS Payroll Calendar

PAY PERIOD CALENDAR 2019

END of Pay Period

2020 PAYROLL SCHEDULE

holidays

JANUARY								APRIL							
S	M	T	W	T	F	S		S	M	T	W	T	F	S	
			1	2	3	4	(1)				1	2	3	4	
5	6	7	8	9	10	11		5	6	7	8	9	10	11	8
12	13	14	15	16	17	18	(2)	12	13	14	15	16	17	18	
19	20	21	22	23	24	25		19	20	21	22	23	24	25	(9)
26	27	28	29	30	31			26	27	28	29	30			

FEBRUARY

2	3	4	5	6	7	8	
9	10	11	12	13	14	15	
	4						

16	17	18	19	20	21	22	
23	24	25	26	27	28	29	5

MARCH

MAY

JUNE

JULY

S	M	T	W	T	F	S
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	

AUGUST

S	M	T	W	T	F	S
						1

SEPTEMBER

OCTOBER

S	M	T	W	T	F	S
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

NOVEMBER

DECEMBER

Dept. Of Agriculture, USFS Payroll Calendar

PAY PERIOD CALENDAR 2020

WESTERN AIR AMBULANCE PHONE LIST (not garaunteed to be current)

STATE	SERVICE NAME	HOSPITAL / LOCATION	PHONE \#'S
ALASKA	MAST	AK STATE TROOPERS	907-451-5333
ARIZONA	GUARDIAN AIR	FLAGSTAFF MEDICAL CTR	800-523-9391
	CLASSIC LIFE GUARD	PAGE	800-444-9223
CALIFORNIA	MERCY AIR AMB.	MERCY MED CTR, REDDING	530-225-7252
	MOUNTAIN LIFEFLIGHT	SUSANVILLE	800-926-0801
	AIR MED TEAM	REDDING MED CTR	800-432-9944
COLORADO	ST. MARY'S AIR LIFE	ST. MARY'S, GRAND JUNCTION	800-332-4923
	YAMPA VALLEY AIR AMB.	STEAMBOAT SPRINGS	800-900-6800
	FLIGHT FOR LIFE	COLORADO SPRINGS	800-4222254
	AIR RESPONSE	ENGLEWOOD	303-768-8089
	FLIGHT FOR LIFE	ST ANTHONY'S, DENVER	800-525-3712
	TRANSPORT CARE	MEMORIAL, COLO SPRINGS	800-763-4373
IDAHO	LIFE FLIGHT	ST. ALPHONSUS, BOISE	800-367-3230
	LIFE FLIGHT	BANNOK MED CTR, POCATELLO	800-232-0911
	ACCESS AIR	BOISE	208-333-9911
MONTANA	LIFE FLIGHT	ST. PATRICK'S, MISSOULA	800-991-SEND
	MERCY FLIGHT/MEDFLIGHT	GREAT FALLS	800-972-4000
	MEDFLIGHT	BILLINGS	800-325-1774
NEVADA	MERCY AIR	LAS VEGAS	800-842-4431
	MEDIC AIR	RENO	800-234-3822
	ACCESS AIR	ELKO	775-738-3493
	CARE FLIGHT	RENO, GARDNERVILLE, TRUKEE	775-858-5700
NEW MEXICO	SOUTHWEST AIR AMB.	FAIRACRES/LAS CRUCES	505-525-2660
	MED FLIGHT AIR AMB.	ALBUQUERQUE	800-842-4431
	LIFEGUARD AIR EMERGENCY	ALBUQUERQUE	800-633-5438
	GALLUP MED FLIGHT	GALLUP	505-863-6606
OREGON	AIR LIFE OF OREGON	BEND	800-522-2828
	LIFE FLIGHT	PORTLAND	800-452-7434
	LIFEGUARD AIR AMB.	HILLSBORO	503-640-2927
UTAH	AIR MED	U OF UT HEALTH CTR, SALT LAKE	800-453-0120
	LIFE FLIGHT	INTERMT HLTH CARE, SALT LAKE	801-321-1234
WASHINGTON	NORTHWEST MEDSTAR	SPOKANE	800-422-2440
	AIRLIFT NORTHWEST	SEATTLE	800-426-2430
WYOMING	WYOMING LIFE FLIGHT	WY MED CTR, CASPER	800-442-2222

Medical Incident Report						
FOR A NON-EMERGENCY INCIDENT, WORK THROUGH CHAIN OF COMMAND TO REPORT AND TRANSPORT INJURED PERSONNEL AS NECESSARY.						
Use the following items to communicate situation to communicationsfispatch. 1. CONTACT COMMUNICATIONS / DISPATCH (Verify correct frequency prior to starting report) Ex: "Communications, Div. Alpha. Stand-by for Emergency Traffic." 2. INCIDENT STATUS: Provide incident summary (including number of patients) and command structure. Ex: "Communications, I have a Red priority patient, unconscious, struck by a falling tree. Requesting air ambulance to Forest Road 1 at (Lat./Long.) This will be the Trout Meadow Medical, IC is TFLD Jones. EMT Smith is providing medical care."						
Severity of Emergency / Transport Priority		RED / PRIORITY 1 Life or limb threatening injury or illness. Evacuation need is IMMEDIATE Ex: Unconscious, difficilty breathing, bleeding severely, $2^{\circ}-3^{\circ}$ burns more than 4 palm sizes, heat stroke, disoriented. YELLOW / PRIORITY 2 Serious Injury or illness. Evacuation may be DELAYED if necessary. Ex: Significant trauma, unable to walk, $2^{\circ}-3^{\circ}$ burns not more than $1-3$ palm sizes. GREEN / PRIORITY 3 Minor Injury or illness. Non-Emergency transport Ex: Sprains, strains, minor heat-related ilness.				
Nature of Injury or Illness \& Mechanism of Injury						Brief Summary of Injury or IIIness (Ex: Unconscious, Struck by Falling Tree)
Transport Request						Air Ambulance / Short Haul/Hoist Ground Ambulance / Other
Patient Location						Descriptive Location \& Lat. / Long. (WGS84)
Incident Name						Geographic Name + "Medical" (Ex: Trout Meadow Medical)
On-Scene Incident Commander						Name of on-scene IC of Incident within an Incident (Ex: TFLD Jones)
Patient Care						Name of Care Provider (Ex: EMT Smith)
3. INITIAL PATIENT ASSESSMENT: Complete this section for each patient as applicable (start with the most severe patient)						
Patient Assessment: See IRPG page 106						
Treatment:						
4. TRANSPORT PLAN:						
Evacuation Location (if different): (Descriptive Location (drop point, intersection, etc.) or Lat. / Long.) Patient's ETA to Evacuation Location:						
Helispot / Extraction Site Size and Hazards:						
5. ADDITIONAL RESOURCES / EQUIPMENT NEEDS:						
Example: Paramedic/EMT, Crews, Immobilization Devices, AED, Oxygen, Trauma Bag, IV/Fluid(s), Splints, Rope rescue, Wheeled litter, HAZMAT, Extrication						
6. COMMUNICATIONS: Identify State Air/Ground EMS Frequencies and Hospital Contacts as applicable						
Function	Channel Name/Nu	mber	Receive (RX)	Tone/NAC *	Transmit (TX)	Tone/NAC *
COMMAND						
AIR-TO-GRND						
TACTICAL						
7. CONTINGENCY: Considerations: If primary options fail, what actions can be implemented in conjunction with primary evacuation method? Be thinking ahead...						
8. ADDITIONAL INFORMATION: Updates/Changes, etc.						
REMEMBER: Confirm ETA's of resources ordered. Act according to your level of training. Be Alert. Keep Calm. Think Clearly. Act Decisively.						

FIRE LINE LEADER RESPONSIBILITIES

(Establish clear Leader's Intent and Supervise at the scene of action not in your truck/office)
Initial Attack Incident Commander (ICT4/5): also see pages 60-61

- Provide for Safety and welfare of assigned personnel
- Initiate and maintain Incident Briefing(ICS Form 201)
- Size up fire situation and concisely communicate resource needs
- Analyze Incident complexity
- Plan appropriate method of attack
- Brief personnel and keep them informed
- Direct and coordinate assigned resources
- Monitor weather, fire behavior, and environmental factors to anticipate changes
- Adjust tactics to meet changing conditions
- Maintain current Unit Log(ICS Form 214)
- Solicit Feedback and participate in AARs

Task Force/Strike Team Leader:

- Obtain briefing from DIVS/IC
- Review assignment with assigned resources
- Travel to and from line with assigned resources
- Monitor and inspect progress; make changes as necessary
- Coordinate action with adjacent resources
- Keep supervisor informed of status and progress
- Obtain logistics/equipment needs from assigned resources
- Retain control of assigned resources while off-line
- Maintain a current unit log (ICS form 214)

Single Resource Boss (CRWB, ENGB, FIRB, FELB):

- Responsible for supervising and directing a firefighting module such as: hand crew, engine, dozer, firing team, and fallers.
- Obtain briefing from Task Force/Strike Team Leader/IC
- Review assignment with module and assign work tasks
- Obtain Necessary equipment and supplies
- Review current and predicted Wx conditions and expected Fire Bx
- Brief module on safety including escape routes and safety zones
- Monitor work progress; make changes as necessary
- Keep supervisor informed of progress and changes
- Inform supervisor promptly of problems
- Brief/Debrief with relief personnel on the fireline
- Complete and turn in time records

REMOTE OPERATIONS UPDATE CALL-IN CHEAT SHEET

When providing an update on a remote portion of a fire, managers may have specific questions about the current status of a fire, and they'll usually let you know what those are. If not, these items listed below will assist you in painting a decent picture of an ongoing fire's status.

- Estimated (or known) current fire size
- Growth Overnight/ since last checked
- \% Active Perimeter
- Active portion / quadrant (N, S, E, W)
- Fuel Model carrying fire (pay special attention to FM transitions)
- Fire Behavior Observed: ROS, Flame Length, torching, spotting, smoke obs.
- Time of Activity (burning window)
- Weather highlights: High Temps, Low RH, wind speed and direction
- Communicate your plan for the shift
- Ask if any other information is needed (when they'd like the next update, etc)
- Specific safety or operational concerns/mitigations

When communicating with a dispatch center/ ICP, consider the additional communication SOPs:

- Notify Dispatch when you begin your travel to and from the fire, when you begin driving and when you begin hiking. This may get redundant, but they'll at least know where you are.
- Let Dispatch know when you've arrived on the fire, and give them an estimate of when you'll provide a fire update.
- Communicate your info only when it's appropriate to do so: if other radio traffic exists, wait patiently for a break in radio traffic, and be only as a detailed as necessary with your update.
- Always be cordial and polite when communicating with dispatch centers.

ONE DAY ORDER AMOUNTS

ITEM	QUANTITY
Water, 5 gal cubie	$1 / 2$ per person
MRE's	4 per person
Batteries, AA	15 per radio
Toilet Paper	1 roll per 8 people
Fuel (unleaded)	5 gal $=20$ hours chainsaw use
Bar Oil	10 qts = 20 hours chainsaw use
2 cycle mix	12.8 oz = 20 hours chainsaw use
Fuel (24:1)	Mark III 5 gal = 3 hours, Shindawa 5 gal = 10hrs

[^0]: *NOTE: The adjustment factor is used to reduce the 20-foot wind to eye level wind (e.g. A forecasted 10 mph 20-foot wind in a partially sheltered stand would likely produce a 3 mph eye level wind)

