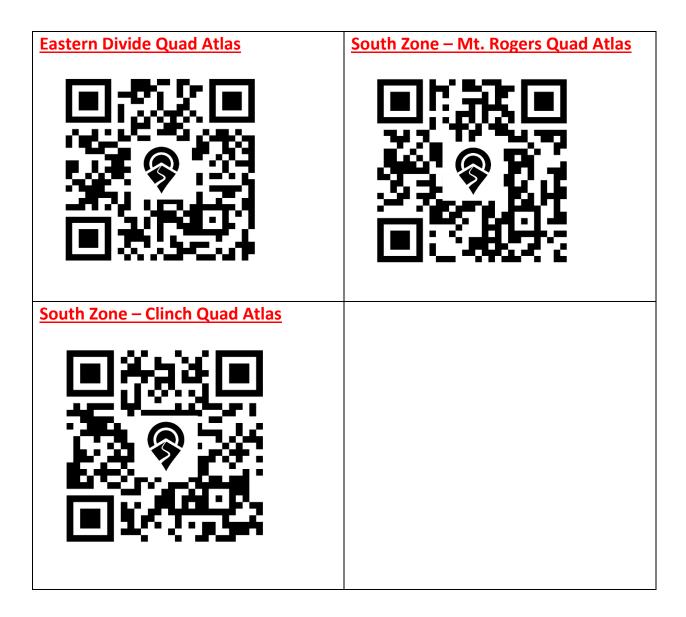
George Washington & Jefferson National Forests

Detailer Guide

Administrative Access to the

George Washington and Jefferson National Forest Atlas


Maps for Mobile Devices via the Avenza Maps App

A Please Note:

These maps are for administrative use only by Forest Service employees, cooperators, and contractors. NOT FOR PUBLIC USE.

All others must purchase these maps from the Avenza Map Store.

THIS DOCUMENT IS FOR INTERNAL USE ONLY AND NOT FOR DISTRIBUTION OUTSIDE THE AGENCY

Forest Designator: VA-VAF

Updated: 2/23/2024

Table of Contents

Introduction	6
Forest Information	
Overview Map	7
Fire Personnel	8
Suppression and Aviation Resources	10
Communications	
Contact Information	
Forest Repeater Maps	13
GWJNFs Radio Communication Channels	
Fire Danger	
Fuels and Fire Behavior	24
Fire Danger Rating Areas	28
Pocket Cards	
Documentation	
ICS 214	30

Introduction

This briefing document is intended to provide fire personnel with important reference information pertinent to fire suppression and prescribed burning activities on the George Washington and Jefferson National Forests and surrounding communities. It is recommended to use this document in conjunction with the Field Medical Emergency Evacuation Plan and Pocket Operations Guide. *It is not intended for public distribution.*

Mission Statement and Core Values

Forest Service Mission: "To sustain the health, diversity, and productivity of the Nation's forests and grasslands to meet the needs of present and future generations."

Fire and Fuels Management Mission: "To assist Forest Service and interagency land managers with wildfire suppression, prescribed fire, and other fuels reduction operations and accomplish these tasks in a professional, effective, and safe manner."

Core Values:

<u>Duty</u> - Moral commitment to the mission resulting in action rather than mere passive feeling or recognition while overlooking self-interest for the good of the whole.

<u>Respect</u> – Maintaining a positive feeling of esteem for ourselves, coworkers and cooperators and conducting our actions representative of that esteem.

<u>Integrity</u> - Consistency of actions, values, methods, measures, principles, expectations and outcome. We are all accountable for our actions. Practice and lead by example.

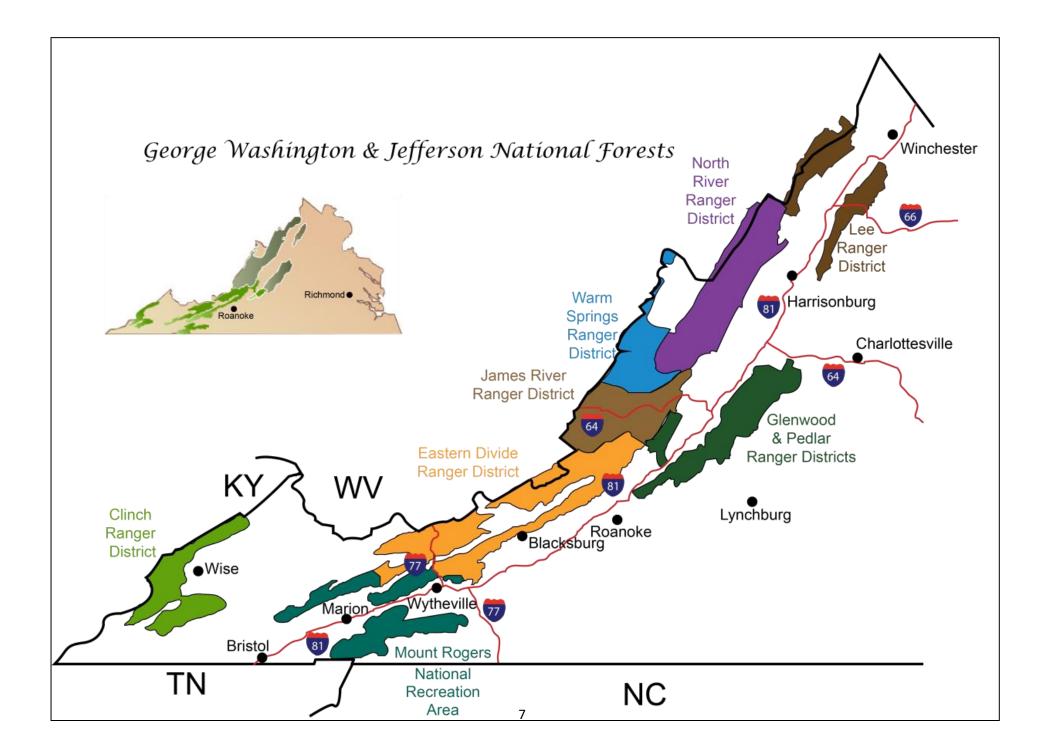
Forest Overview

The George Washington and Jefferson National Forests (GW-Jeff) encompass nearly 1.7 million acres in Virginia, 123,000 acres in West Virginia, and 900 acres in Kentucky. There are 23 Wildernesses on the forests totaling approximately 140,000 acres. As part of the Appalachian Hardwood Forest, there are over 40 tree species represented on the GW-Jeff as well as over 2,000 species of shrubs and herbaceous plants.

The topography of the GW-Jeff varies greatly from rolling hills to steep, rocky mountainous terrain with elevation differences of a few hundred feet above sea level to 5700 feet at the top of Mount Rogers on the southern end of the forest.

Many small communities and summer homes exist throughout the Forest. This creates a true urban interface challenge. Fire education and fuels reduction projects are continually in progress, but the threat remains high for catastrophic fires.

The Forest has a total of seven ranger districts and one national recreation area. It is divided into four fire management zones: North, Central, Eastern Divide, and South.


North Zone- Lee and North River Ranger Districts

*The Augusta Interagency Hotshot Crew is housed on the North River Ranger District

Central Zone- Warm Springs, James River, and Glenwood/Pedlar Ranger Districts

Eastern Divide Zone- Eastern Divide Ranger District

South Zone- Clinch Ranger District and Mount Rogers National Recreation Area

Fire Personnel Contact List

Duty Station	Position	Call Sign	Name	Office #	Cell #	Fax #
			Supervisor's Office			
SO	Forest FMO	Chief-1	Colten Moor colten.moor@usda.gov	276-706-7729	276-706-7729	
Charlottesville	Forest AFMO	Chief-2	Ted Docev ted.docev@usda.gov	434-423-2002	540-290-0461	434-423-2021
Charlottesville	VICC Manager		Natalie Broce natalie.broce@usda.gov	434-423-2002	540-798-7313	434-423-2021
Charlottesville	VICC Assistant Manager		Lyte Gillespie lyte.gillespie@usda.gov	434-423-2003	434-962-4722	434-423-2021
Charlottesville	Initial Attack Dispatcher		Alex Orange-Alvarez alexander.orange- alvarez@usda.gov	434-423-2007	740-818-1050	434-423-2021
Charlottesville	Initial Attack Dispatcher		VACANT	434-423-2002		434-423-2021
Charlottesville	Administrative Support Assistant		VACANT	434-423-2005		434-423-2021
Charlottesville	Training Officer		Marina Foltz marina.foltz@usda.gov	434-423-2002	540-588-1953	434-423-2021
Flatwoods CCC	Job Corps AFMO	BC-12	Casey Howard casey.howard@usda.gov	276-395-8444	540-492-2146	276-395-2043
Flatwoods CCC	Job Corps Captain	Cpt-12	Salvador Benabe salvador.benabe@usda.gov	276-395-8408	540-484-3614	276-395-2043
SO	Helicopter Manager (Detailed)		Jael Constantino jael.constantino@usda.gov	619-536-3480		
			North Zone			
North River	Zone FMO	DIV-4	Aaron Strobel aaron.p.strobel@usda.gov	540-432-8227	606-312-1137	540-432-1975
Lee	Zone AFMO	BC-41	Jay Collett jay.collett@usda.gov	540-984-4101 X114	540-292-1038	540-984-8989
North River	Engine Captain	Cpt-642	VACANT	540-432-0187	606-312-1137	540-432-1975
North River	Engine Operator	FEO-642	Joe Emswiler joseph.emswiler@usda.gov	540-432-8235	540-746-1781	540-432-1975
North River	Engine Operator	AFEO-642	Jeroen Kinley jeroen.kinley@usda.gov	540-432-0187	304-619-9169	540-432-1975
Lee	Module Captain	Cpt-41	Mark Rudacille mark.rudacille@usda.gov	540-984-4101	540-830-2516	540-984-8989
Augusta Base	Augusta IHC Superintendent	Supt-8	Derek Kramer derek.kramer@usda.gov	540-997-5167	530-715-1028	540-997-1458
Augusta Base	Augusta IHC Captain	Augusta A	Doug Savor douglas.savor@usda.gov	540-997-5167	540-290-0338	540-997-1458
Augusta Base	Augusta IHC Captain	Augusta B	Brian Borden brian.borden@usda.gov	540-997-5167	619-208-5307	540-997-1458
North River	Dozer Operator	DZOP	Ryan Shanebrook ryan.shanebrook@usda.gov	540-432-8224	619-208-5307	540-432-1975

Duty Station	Position	Call Sign	Name	Office #	Cell #	Fax #
			Central Zone		•	
Warm Springs	Zone FMO	DIV-3	Brent Foltz brent.foltz@usda.gov	540-291-5231	540-683-3500	540-839-2496
Warm Springs	Zone AFMO	BC-31	Joe Jarrells Joseph.jarrells@usda.gov	540-839-2521	540-968-3616	
Glenwood/Pedlar	Engine Captain	Cpt-632	Chris Schultz christopher.schultz@usda.gov	540-291-2188	540-570-9992	540-291-1759
Glenwood/Pedlar	Engine Operator	FEO-632	Marcus Sewell marcus.sewell@usda.gov	540-291-2188	540-960-3486	540-291-1759
Warm Springs	Module Captain	Cpt-31	Adam Christie adam.christie@usda.gov	540-839-2521	540-597-4729	540-839-2496
Glenwood/Pedlar	Dozer Operator	DZOP	Aaron Bennington aaron.bennington@usda.gov	540-291-2188	540-988-2700	540-291-1759
			Eastern Divide Zone			
Blacksburg Office	Zone FMO	DIV-2	Will Brimm william.brimm@usda.gov	540-953-3573	540-577-6264	540-864-6969
Blacksburg Office	Zone AFMO	BC-21	Robbie Claytor robert.claytor@usda.gov	540-552-4641	423-220-6594	540-864-6969
Blacksburg Office	Module Captain	Cpt-21	Brian Theiler brian.theiler@usda.gov	540-552-4641	208-403-1234	540-864-6969
Blacksburg Office	Engine Captain	Cpt-621	VACANT			
Blacksburg Work Center	Engine Operator	FEO-621	Josh Orr joshua.orr@usda.gov		540-510-0301	
Blacksburg Work Center	Asst. Engine Operator	AFEO-621	Carson Ramsey carson.ramsey@usda.gov		828-447-1110	
Blacksburg Office	Dozer Operator	DZOP	Jonathan Crowe jonathan.crowe@usda.gov		537-707-4618	540-864-6969
			South Zone			
Clinch	Zone FMO	DIV-1	VACANT	276-679-8370 x224		276-679-8374
Mt. Rogers	Zone AFMO	BC-11	VACANT	276-679-8370		276-783-5504
Clinch	Engine Captain	Cpt-611	Josh Bailey joshua.bailey2@usda.gov	540-997-5167	276-455-4466	540-997-1458
Clinch	Engine Operator	FEO-611	VACANT			
Mt. Rogers	Module Captain	Cpt-11	Johnathan Catron jonathan.catron@usda.gov		276-781-3375	
Mt. Rogers	Dozer Operator	DZOP	Todd Caudill todd.caudill@usda.gov	276-782-4379 276-783-5196	540-570-1480	276-783-5504

Suppression Resources

North Zone

Lee Ranger District E-641 Module 41 D-341 (Class A Transport) Fire Cache North River Ranger District E-642 E-741 Fire Cache

Central Zone

Warm Springs Ranger District Fire Cache James River Ranger District, Dolly Ann Work Center E-631 Module 31 Fire Cache **Glenwood/Pedlar Ranger District, Natural Bridge** Fire Cache **Buena Vista Work Center** E-632 D-331 (Class A Transport) D-332 (Class B Transport) Fire Cache Eastern Divide Zone (and Ranger District) Blacksburg Module 21 E-621 D-322 (Class A Transport) Fire Cache South Zone **Mount Rogers National Recreation Area** E-612 D-311 (Class A Transport) Fire Cache at Sugar Grove Work Center

Forest Aviation

Blacksburg Helibase

EU Contract MAP: 60 days March 5-May 3 **Helicopter 402MA** (B-407; T3) USDA Forest Service Aquatics and Fisheries Lab 1710 Research Park Dr. Blacksburg, VA 24060 Dispatch Line: 540-231-0082 Chat Line: N/A Fax: 540-231-1383

Aviation Hazard Map

Sugar Grove Work Center Module 11 Clinch Ranger District E-611 Fire Cache

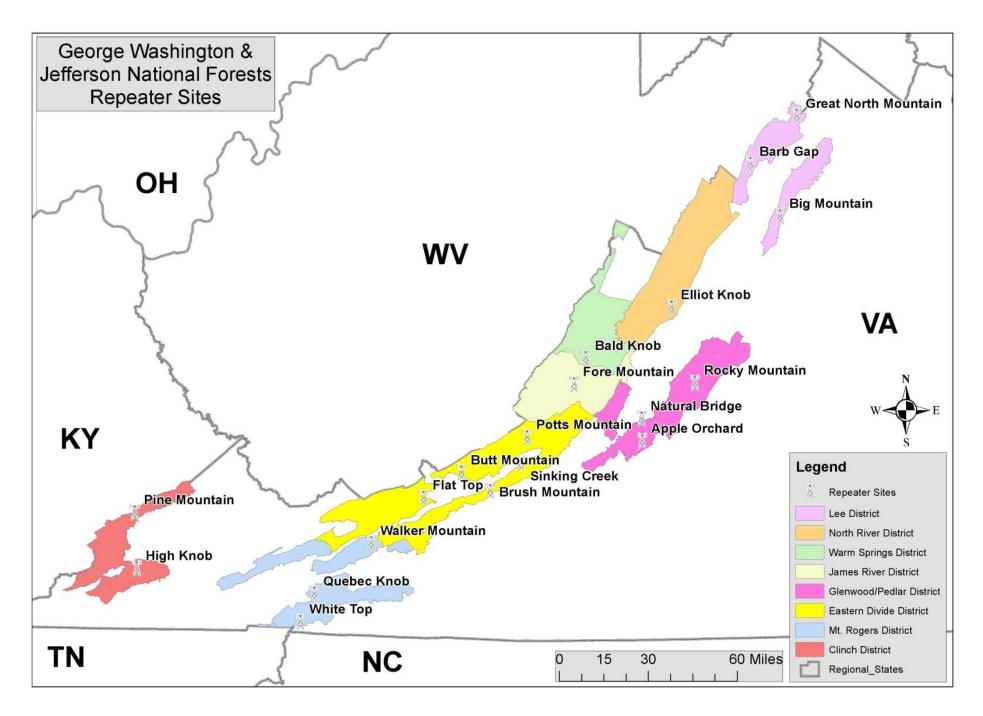
Forest Contact Information

Virginia Interagency Coordination Center (Available by phone 24 hours)

Radio Call Sign: Charlottesville

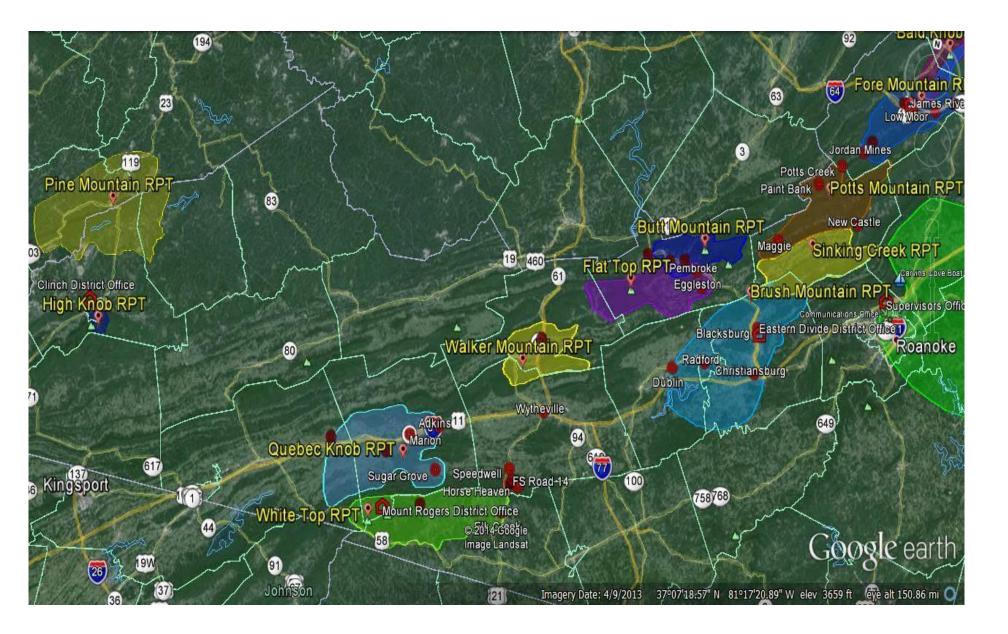
Phone Number: 434-423-2002 (main line), 540-521-4189 (After Hours Duty Phone)

Fax: 434-423-2021

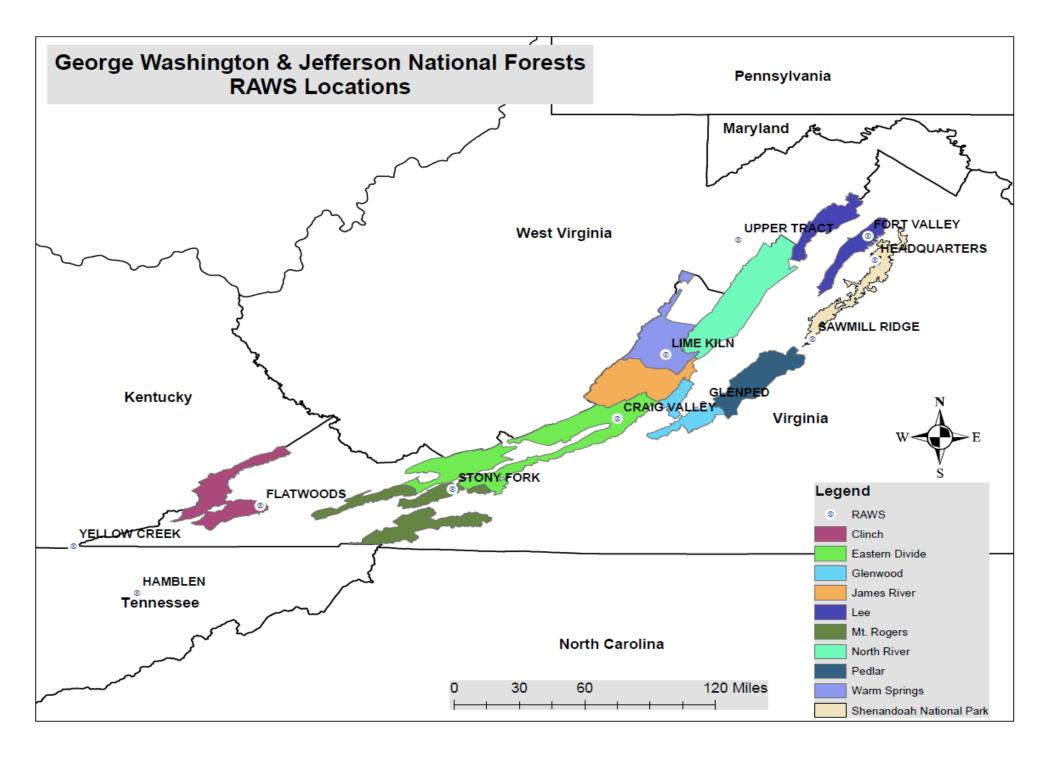

E-mail: <u>vavic@firenet.gov</u>

Offices

Name	Address	Phone Number	Fax Number
Augusta Interagency Hotshot Base	2897 Little Calf Pasture Highway Augusta Springs, VA 24411	540-997-5167	540-997-4128
Buena Vista Work Center	699 East 29 th Street,(Hwy 60 East) Buena Vista, VA 24416	540-261-2311	540-261-7907
Clinch Ranger District	1700 Park Ave. SW Norton, VA 24277	276-679-8370	276-679-8374
Clinch Work Center	9616 Coeburn Mtn Rd Wise, VA 24293	N/A	N/A
Dolly Ann Work Center	226 Smokey Bear Lane Covington, VA 24426	540-962-5602	N/A
Eastern Divide Ranger District- Blacksburg Office	110 Southpark Drive Blacksburg, VA 24060	540-552-4641	540-552-4376
Eastern Divide Ranger District- Blacksburg Work Center	229 Brush Mountain Rd Blacksburg, VA 24060	540-552-3731	N/A
Flatwoods Civilian Conservation Corps	2803 Dungannon Rd, Coeburn, VA 24230	276-395-3384	276-395-2043
Glenwood/Pedlar Ranger District	27 Ranger Lane Natural Bridge Station, VA 24579	540-291-2188	540-291-1759
Lee Ranger District	95 Railroad Ave. Edinburg, VA 22824	540-984-4101	540-984-8989
Mt. Rogers National Recreation Area	3714 Highway 16 Marion, VA 24354	276-783-5196	276-783-5504
North River Ranger District	401 Oakwood Dr. Harrisonburg, VA 22801	540-432-0187	540-432-1975
Sugar Grove Work Center	655 Flat Ridge Rd, Sugar Grove, VA 24375	276-677-3562	276-677-3982
Supervisor's Office	5162 Valley Point Parkway Roanoke, VA 24019	540-265-5100	540-265-5145
Virginia Interagency Coordination Center	900 Natural Resources Dr. Charlottesville, VA 22903	434-423-2002	434-423-2021
Warm Springs and James River Ranger Districts	422 Forestry Rd Hot Springs, VA 24445	540-839-2521	540-839-2496


Law Enforcement

Name	Location	Work Phone	Cell Phone
Katie Ballew	Roanoke, Patrol Captain	540-265-5150	540-524-0437
Jon Williams	North River RD	540-432-8255	540-520-7869
VACANT	Lee RD		
Tunde Oyewole	Glenwood/Pedlar RD (Lyndhurst)	540-291-2188	540-676-1670
Chip Buchanan (Retiring March 2024)	Warm Springs and James River RDs	540-962-2214	540-581-5021
John Price Retiring Feb 2024)	Eastern Divide RD (New Castle)	540-552-4641	540-580-9975
VACANT	Mt. Rogers RD	276-783-5196	540-204-6965
VACANT	Clinch RD		
Clayton Albright	Special Agent	540-265-5106	540-200-5466
VACANT	Program Assistant		



George Washington (North) Repeater Coverage Map

Jefferson (South) Repeater Coverage Map

Current weather readings can be accessed through MesoWest at: <u>https://mesowest.utah.edu</u> or

Station Name	NWS ID	Latitude	Longitude	Owner
CRAIG VALLEY	444002	37.52194	-80.08056	USFS
FLATWOODS	448502	36.890472	-82.457083	USFS
FORT VALLEY	440402	38.84278	-78.41528	USFS
GLENPED	441631	37.62639	-79.5125	USFS
HAMBLEN	403301	36.25722	-83.27722	TN DOF
HEADQUARTERS	440901	38.66667	-78.37	NPS
LIME KILN	441801	37.98667	-79.75917	USFS
SAWMILL RIDGE	441906	38.1	-78.784722	NPS
STONY FORK	447502	37.01083	-81.17833	USFS
UPPER TRACT	463501	38.81667	-79.27722	WV SUT
YELLOW CREEK	159801	36.6	-83.7	NPS

GWJNFs Radio Communication Channels

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	TX CG	TX NAC	TLK GRP	BW
Ch. 1	GREATNORTH	171.5250	D	KA CG	\$F7E	164.1375	D	IXCG	\$455	1	N
Ch. 2	BIG MTN	171.5250	D		\$F7E	164.1375	D		\$4CE	1	N
Ch. 3	BARB GAP	171.5250	D		\$F7E	164.1375	D		\$3E8	1	N
Ch. 4	ELLIOT	169.9500	D		\$F7E	166.2000	D		\$526	1	N
Ch. 5	COW KNOB	169.9500	D		\$F7E	166.2000	D		\$47C	1	N
Ch. 6	FUTURE RPT		D		\$F7E		D		\$585	1	N
Ch. 7	BALD KNOB	171.5750	D		\$F7E	164.1375	D		\$707	1	N
Ch. 8	FORE MTN	171.5750	D		\$F7E	164.1375	D		\$5B6	1	N
Ch. 9	ROCKY MTN	171.5250	D		\$F7E	164.1375	D		\$61F	1	N
Ch. 10	APPLE ORCH	171.5250	D		\$F7E	164.1375	D		\$68F	1	N
Ch. 11	NAT BRIDGE	171.5250	D		\$F7E	164.1375	D		\$40B	1	N
Ch. 12	COMMON 1	163.7125	А	103.5		163.7125	А	103.5			N
Ch. 13	COMMON 2	168.6125	А	103.5		168.6125	А	103.5			N
Ch. 14	R8 FIRE	166.5625	А	000.0		166.5625	А	000.0			N
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	А	000.0			N
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	А	110.9			N

GROUP / ZONE 1 – GEORGE WASHINGTON NF

GROUP / ZONE 2 – JEFFERSON NF

		RX		T B		тх	183			TLK	
	LABEL	FREQUENCY	MODE	RX CG	RX NAC	FREQUENCY	MODE	TX CG	TX NAC	GRP	BW
Ch. 1	POTTS MTN	171.5750	D		\$F7E	164.9375	D		\$455	1	Ν
Ch. 2	SINKING	171.5750	D		\$F7E	164.9375	D		\$4CE	1	Ν
Ch. 3	BUTT MTN	171.5750	D		\$F7E	164.9375	D		\$526	1	Ν
Ch. 4	BRUSH MTN	171.5750	D		\$F7E	164.9375	D		\$555	1	Ν
Ch. 5	FLAT TOP	171.5750	D		\$F7E	164.9375	D		\$5B6	1	Ν
Ch. 6	WALKER MTN	169.9500	D		\$F7E	166.2000	D		\$61F	1	Ν
Ch. 7	QUEBEC	169.9500	D		\$F7E	166.2000	D		\$68F	1	Ν
Ch. 8	WHITE TOP	169.9500	D		\$F7E	166.2000	D		\$40B	1	Ν
Ch. 9	HIGH KNOB	171.5750	D		\$F7E	164.9375	D		\$3E8	1	Ν
Ch. 10	PINE MTN	171.5750	D		\$F7E	164.9375	D		\$430	1	Ν
Ch. 11	FUTURE RPT	INACTIVE	D		1000	INACTIVE	D			1	Ν
Ch. 12	COMMON 1	163.7125	А	103.5		163.7125	А	103.5			Ν
Ch. 13	COMMON 2	168.6125	А	103.5		168.6125	А	103.5			N
Ch. 14	R8 FIRE	166.5625	А	000.0		166.5625	А	000.0			Ν
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	А	000.0			Ν
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	А	110.9			Ν

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	TX CG	TX NAC	TLK GRP	BW
Ch. 1	LEE DIRECT	171.5250	D		\$F7E	171.5250	D		\$455	1	N
Ch. 2	GREATNORTH	171.5250	D		\$F7E	164.1375	D		\$455	1	N
Ch. 3	BIG MTN	171.5250	D		\$F7E	164.1375	D		\$4CE	1	N
Ch. 4	BARB GAP	171.5250	D		\$F7E	164.1375	D		\$3E8	1	N
Ch. 5	ELLIOT	169.9500	D		\$F7E	166.2000	D		\$526	1	N
Ch. 6	COW KNOB	169.9500	D		\$F7E	166.2000	D		\$47C	1	N
Ch. 7	NPS-1 SHEN	167.1500	А	127.3		167.1500	А	127.3			N
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	N
Ch. 9	SE COMPACT	159.2850	А	0.000		159.2850	A	000.0			N
Ch. 10	R8	166.5625	А	000.0		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	0.000		169.1875	А	000.0			N
Ch. 12	TAC 2	169.1250	А	0.000		169.1250	А	000.0			N
Ch. 13	TAC 3	168.7250	А	0.000		168.7250	А	000.0			N
Ch. 14	A2G 06	166.8000	А	000.0		166.8000	А	000.0			N
Ch. 15	AIR / GND 15	167.5250	A	000.0		167.5250	А	000.0			N
Ch. 16	AIR GUARD	168.6250	A	110.9		168.6250	А	110.9			N

GROUP / ZONE 3 – LEE

GROUP / ZONE 4 – NORTH RIVER

		RX	MODE	DY CC	DYNAC	TX	MODE	TY CC	TYNAC	TLK	D 14/
	LABEL	FREQUENCY	MODE	RX CG	RX NAC	FREQUENCY	MODE	TX CG	TX NAC	GRP	BW
Ch. 1	NR DIRECT	169.9500	D		\$F7E	169.9500	D		\$526	1	N
Ch. 2	FUTURE RPT		D		\$F7E		D		\$585	1	N
Ch. 3	BIG MTN	171.5250	D		\$F7E	164.1375	D		\$4CE	1	N
Ch. 4	BARB GAP	171.5250	D		\$F7E	164.1375	D		\$3E8	1	N
Ch. 5	ELLIOT	169.9500	D		\$F7E	166.2000	D		\$526	1	N
Ch. 6	COW KNOB	169.9500	D		\$F7E	166.2000	D		\$47C	1	N
Ch. 7	NPS-1 SHEN	167.1500	А	127.3		167.1500	A	127.3			N
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	N
Ch. 9	SE COMPACT	159.2850	А	000.0		159.2850	A	000.0			N
Ch. 10	R8	166.5625	А	000.0		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	0.000		169.1875	A	000.0			N
Ch. 12	TAC 2	169.1250	А	0.000		169.1250	A	000.0			N
Ch. 13	TAC 3	168.7250	А	000.0		168.7250	А	000.0			N
Ch. 14	AIR / GND 06	166.8000	А	000.0		166.8000	А	000.0			N
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	А	000.0			N
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	A	110.9			N

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	TX CG	TX NAC	TLK GRP	BW
Ch. 1	WS DIRECT	171.5750	D		\$F7E	171.5750	D		\$707	1	N
Ch. 2	JR DIRECT	171.5750	D		\$F7E	171.5750	D		\$5B6	1	N
Ch. 3	BALD KNOB	171.5750	D		\$F7E	164.1375	D		\$707	1	N
Ch. 4	FORE MTN	171.5750	D		\$F7E	164.1375	D		\$5B6	1	N
Ch. 5	ELLIOT	169.9500	D		\$F7E	166.2000	D		\$526	1	N
Ch. 6	COW KNOB	169.9500	D		\$F7E	166.2000	D		\$47C	1	N
Ch. 7	POTTS MTN	171.5750	D		\$F7E	164.9375	D		\$455		N
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	N
Ch. 9	SE COMPACT	159.2850	А	000.0		159.2850	A	000.0			N
Ch. 10	R8	166.5625	А	000.0		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	000.0		169.1875	A	000.0			N
Ch. 12	TAC 2	169.1250	А	000.0		169.1250	А	000.0			N
Ch. 13	TAC 3	168.7250	А	000.0		168.7250	А	000.0			N
Ch. 14	AIR / GND 06	166.8000	А	000.0		166.8000	А	000.0			N
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	А	000.0			N
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	А	110.9			N

GROUP / ZONE 5 – JAMES RIVER / WARM SPRINGS

GROUP / ZONE 6 – GLENWOOD / PEDLAR

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	TX CG	TX NAC	TLK GRP	BW
Ch. 1	GP DIRECT	171.5250	D		\$F7E	171.5250	D		\$68F	1	Ν
Ch. 2	ROCKY MTN	171.5250	D		\$F7E	164.1375	D		\$61F	1	N
Ch. 3	APPLE ORCH	171.5250	D		\$F7E	164.1375	D		\$68F	1	Ν
Ch. 4	NAT BRIDGE	171.5250	D		\$F7E	164.1375	D		\$40B	1	Ν
Ch. 5	ELLIOT	169.9500	D		\$F7E	166.2000	D		\$526	1	N
Ch. 6	SINKING	171.5750	D		\$F7E	164.9375	D		\$4CE	1	N
Ch. 7	NPS-1 SHEN	167.1500	А	127.3		167.1500	А	127.3			Ν
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	Ν
Ch. 9	SE COMPACT	159.2850	А	000.0		159.2850	A	000.0			Ν
Ch. 10	R8	166.5625	А	000.0		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	000.0		169.1875	А	000.0			Ν
Ch. 12	TAC 2	169.1250	А	000.0		169.1250	А	000.0			Ν
Ch. 13	TAC 3	168.7250	А	000.0		168.7250	А	000.0			N
Ch. 14	AIR / GND 06	166.8000	А	000.0		166.8000	А	000.0			Ν
Ch. 15	AIR / GND 15	167.5250	A	000.0		167.5250	А	000.0			Ν
Ch. 16	AIR GUARD	168.6250	A	110.9		168.6250	А	110.9			N

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	TX CG	TX NAC	TLK GRP	BW
Ch. 1	ELLIOT KNOB	169.9500	D		\$F7E	166.2000	D		\$526	1	N
Ch. 2	ROCKY MTN	171.5250	D		\$F7E	164.1375	D		\$61F	1	N
Ch. 3	APPLE ORCH	171.5250	D		\$F7E	164.1375	D		\$68F	1	N
Ch. 4	BALD KNOB	171.5750	D		\$F7E	164.1375	D		\$707	1	N
Ch. 5	FORE MTN	171.5750	D		\$F7E	164.1375	D		\$5B6	1	N
Ch. 6	POTTS MTN	171.5750	D		\$F7E	164.9375	D		\$455	1	N
Ch. 7	NPS 1	167.1500	А	127.3		167.1500	А	127.3			N
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	N
Ch. 9	SE COMPACT	159.2850	А	000.0		159.2850	Α	000.0			N
Ch. 10	R8	166.5625	А	0.000		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	0.000		169.1875	А	000.0			N
Ch. 12	TAC 2	169.1250	А	000.0		169.1250	А	000.0			N
Ch. 13	V-FIRE 21	154.2800	А	0.000		154.2800	Α	000.0			N
Ch. 14	AIR / GND 6	166.8000	А	0.000		166.8000	А	000.0			N
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	А	000.0			N
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	Α	110.9			N

GROUP / ZONE 7 – CENTRAL ZONE INTEROP

GROUP / ZONE 8 – EASTERN DIVIDE

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	TX CG	TX NAC	TLK GRP	BW
Ch. 1	ED DIRECT	171.5750	D		\$F7E	171.5750	D		\$555	1	N
Ch. 2	POTTS MTN	171.5750	D		\$F7E	164.9375	D		\$455	1	N
Ch. 3	SINKING	171.5750	D		\$F7E	164.9375	D		\$4CE	1	N
Ch. 4	BUTT MTN	171.5750	D		\$F7E	164.9375	D		\$526	1	N
Ch. 5	BRUSH MTN	171.5750	D		\$F7E	164.9375	D		\$555	1	N
Ch. 6	FLAT TOP	171.5750	D		\$F7E	164.9375	D		\$5B6	1	N
Ch. 7	WALKER MTN	169.9500	D		\$F7E	166.2000	D		\$61F	1	N
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	N
Ch. 9	SE COMPACT	159.2850	А	000.0		159.2850	A	000.0			N
Ch. 10	R8	166.5625	А	000.0		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	0.000		169.1875	A	000.0			N
Ch. 12	TAC 2	169.1250	А	000.0		169.1250	А	000.0			N
Ch. 13	TAC 3	168.7250	А	000.0		168.7250	А	000.0			N
Ch. 14	AIR / GND 06	166.8000	А	0.000		166.8000	А	000.0			N
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	А	000.0			N
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	Α	110.9			N

GROUP / ZONE 9 – MOUNT ROGERS

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	TX CG	TX NAC	TLK GRP	BW
Ch. 1	MR DIRECT	169.9500	D		\$F7E	169.9500	D		\$40B	1	N
Ch. 2	FLAT TOP	171.5750	D		\$F7E	164.9375	D		\$5B6	1	N
Ch. 3	WALKER MTN	169.9500	D		\$F7E	166.2000	D		\$61F	1	Ν
Ch. 4	QUEBEC	169.9500	D		\$F7E	166.2000	D		\$68F	1	Ν
Ch. 5	WHITE TOP	169.9500	D		\$F7E	166.2000	D		\$40B	1	Ν
Ch. 6	CLONE	INACTIVE				INACTIVE					N
Ch. 7	CLONE	INACTIVE				INACTIVE					N
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	N
Ch. 9	SE COMPACT	159.2850	А	000.0		159.2850	A	000.0			N
Ch. 10	R8	166.5625	А	000.0		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	0.000		169.1875	А	000.0			N
Ch. 12	TAC 2	169.1250	А	0.000		169.1250	А	000.0			N
Ch. 13	TAC 3	168.7250	А	000.0		168.7250	А	000.0			N
Ch. 14	AIR / GND 06	166.8000	А	000.0		166.8000	А	000.0			Ν
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	Α	000.0			N
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	Α	110.9			N

GROUP / ZONE 10 – CLINCH

	LABEL	RX FREQUENCY	MODE	RX CG	RX NAC	TX FREQUENCY	MODE	тх сб	ΤΧ ΝΑΟ	TLK GRP	BW
Ch. 1	CLINCH DIRECT	171.5750	D		\$F7E	171.5750	D		\$3E8	1	N
Ch. 2	WHITE TOP	169.9500	D		\$F7E	166.2000	D		\$40B	1	N
Ch. 3	HIGH KNOB	171.5750	D		\$F7E	164.9375	D		\$3E8	1	N
Ch. 4	PINE MTN	171.5750	D		\$F7E	164.9375	D		\$430	1	N
Ch. 5	CLONE	INACTIVE				INACTIVE					N
Ch. 6	CLONE	INACTIVE				INACTIVE					N
Ch. 7	CLONE	INACTIVE				INACTIVE					N
Ch. 8	PORT RPTR	171.5250	D		\$F7E	164.1375	D		\$5EA	1	N
Ch. 9	SE COMPACT	159.2850	А	000.0		159.2850	A	000.0			N
Ch. 10	R8	166.5625	А	000.0		166.5625	A	000.0			N
Ch. 11	TAC 1	169.1875	А	000.0		169.1875	A	000.0			N
Ch. 12	TAC 2	169.1250	А	000.0		169.1250	A	000.0			N
Ch. 13	TAC 3	168.7250	А	000.0		168.7250	А	000.0			N
Ch. 14	AIR / GND 06	166.8000	А	000.0		166.8000	A	000.0			N
Ch. 15	AIR / GND 15	167.5250	А	000.0		167.5250	A	000.0			N
Ch. 16	AIR GUARD	168.6250	А	110.9		168.6250	A	110.9			N

Conversion Chart

	CTCSS, DECIMAL NAC, HEX NAC Conversion Chart													
<u>NS [1]</u>	PL	стсѕѕ	DECIMAL NAC	HEX NAC	<u>NS [1]</u>	PL	Hz	DECIMAL NAC	HEX NAC	<u>NS [1]</u>	PL	Hz	DECIMAL NAC	HEX NAC
1	XZ	67	0670	\$29E	20	3B	131.8	1318	\$526	NATO		150	1500	\$5DC
2	XA	71.9	0719	\$2CF	21	4Z	136.5	1365	\$555		Non-St	andard To	ne / NAC	
3	WA	74.4	0744	\$2E8	22	4 A	141.3	1413	\$585		WZ	69.3	0693	\$2B5
4	XB	77	0770	\$302	23	4B	146.2	1462	\$5B6			159.8	1598	\$63E
5	WB	79.7	0797	\$31D	24	5Z	151.4	1514	\$5EA			165.5	1655	\$677
6	YZ	82.5	0825	\$339	25	5A	156.7	1567	\$61F			171.3	1713	\$6B1
7	YA	85.4	0854	\$356	26	5B	162.2	1622	\$656	Sec. 1.		177.3	1773	\$6ED
8	YB	88.5	0885	\$375	27	6Z	167.9	1679	\$68F			183.5	1835	\$72B
9	ZZ	91.5	0915	\$393	28	6A	173.8	1738	\$6CA	1.1		189.9	1899	\$76B
10	ZA	94.8	0948	\$3B4	29	6B	179.9	1799	\$707			196.6	1966	\$7AE
11	ZB	97.4	0974	\$3CE	30	7Z	186.2	1862	\$746	1.1		199.5	1995	\$7CB
12	1Z	100	1000	\$3E8	31	7A	192.8	1928	\$788	1	8Z	206.5	2065	\$811
13	1A	103.5	1035	\$40B	32	M1	203.5	1035	\$40B			213.8	2138	\$85A
14	1B	107.2	1072	\$430	33	M2	210.7	2107	\$83B			221.3	2213	\$8A5
15	2Z	110.9	1109	\$455	34	M3	218.1	2181	\$885		9Z	229.1	2291	\$8F3
16	2A	114.8	1148	\$47C	35	M4	225.7	2257	\$8D1			237.1	2371	\$943
17	2B	118.8	1188	\$4A4	36	M5	233.6	2336	\$920			245.5	2455	\$997
18	3Z	123	1230	\$4CE	37	M6	241.8	2418	\$972	1200	0Z	254.1	2541	\$9ED
19	3A	127.3	1273	\$4F9	38	M7	250.3	2503	\$9C7	17.44				

Fuels and Fire Behavior

There are a large variety of fuel types and conditions on the George Washington and Jefferson National Forests. Under dry, windy conditions, all of the fuels on these Forests have the potential to cause problem fires. Below are some of the unique fuel/fire behavior situations that firefighters may encounter while on the Forests.

Snags

Snags are present throughout the Forests. They are perhaps the most critical hazards firefighters face.

Gypsy Moth

The Gypsy Moth first began defoliating trees on the north end of the Forests in 1984, with ensuing widespread mortality by 1987. The drought years of 1987-88 and 1991 followed the first wave of defoliation helped contribute to widespread mortality, particularly in the oak species. The moth has moved south and now gypsy moth induced mortality can be found from the Clinch RD to the Eastern Divide RD.

Many of these standing snags have been dead for 20+ years. The large branch wood has fallen and the root system is partially to near completely decomposed. The increased sunlight has generated brushy growth in the under story. Besides the obvious hazards from snags that are ready to fall, the snags themselves create control problems as both a source and receptor of spotting. Snag to snag ignition has occurred as fuel moistures decrease. Some species, such as chestnut oak, are particularly vulnerable, having a punky outer layer, where some scarlet oaks may have a more case hardened exterior, which is less receptive to ignition.

Hemlock Woolly Adelgid

Since its arrival in the U.S. in the 1920s the **hemlock woolly adelgid** has rapidly colonized parts of New England and the Mid-Atlantic States, where it feeds on eastern hemlock. The hemlock woolly adelgid has infested hemlocks on the George Washington & Jefferson National Forests for at least15 years and in Shenandoah National Park since the late 1980s. In these areas as many as 80 percent of the hemlocks have died due to infestation.

The hemlock woolly adelgid feeds on the sap at the base of hemlock needles, disrupting nutrient flow and causing the needles to change from deep green to a grayish green, then fall off. Without needles the tree starves to death, usually within three to five years of the initial attack. These trees become very unstable during this time and have been known to simply "collapse" upon initiation of a felling operation.

Pine and Southern Pine Beetle Mortality

Southern pine beetle attacks have resulted in pine mortality over the years throughout the George Washington and Jefferson NFs. These pockets are in various states of decomposition. Expect dramatically increased fire behavior in these areas. Increased fuel loading and brushy growth make these areas extremely difficult to control. Line building in these areas is extremely slow (as is travel on escape routes). The spotting potential from the showers of firebrands make these locations poor choices for control lines. Have good safety zones identified and watch for spotting outside the line.

Culls/Green Trees

Historical fire occurrence has wounded many trees and caused cat-faced scars, 99% of which are on the uphill side of the stems, where flame heights are higher, fire is hotter and residence time of heat is longer. They may appear sound from down-slope from down slope. Many green cull trees will catch on fire in the cat faces. **Even solid green trees may fall particularly soon after the fire passes through the area or if they are shallow rooted**. Watch for increased occurrence. With drought, the burns are deeper and will contribute to these problems. Again, no wind is required for the trees to fall.

Line location is critical to reduce risk in areas affected. Scout for areas away from snag concentrations. This may require much larger areas within the final fire perimeter. Pretreating (snagging) the area for snags may be necessary before crews go in the area to work. *The felling of snags is one of the most dangerous jobs we do*. Make every effort to identify and avoid snags. *Some snags may be too dangerous to fell*. Falling snags should be preceded by a thorough briefing and training by local, experienced people familiar with the necessary precautions.

Avoid under-slung lines to reduce exposure to falling snags, though they may fall in any direction. Many of them are quite tall and difficult to spot from a distance. It may be necessary to limit operations at night or when the wind picks up when these hazards exist. Review snag precautions and safety practices.

Oak Litter

Much of the hardwood leaf litter on the Forests is composed of oak leaves of various species. Oak leaf litter tends to be more curled than other hardwood leaf litter. This results in a fluffy, deeper fuel bed arrangement, especially in the fall. Without significant rainfall or snow after they have fallen, the leaves will continue to remain fluffy. In the fall, oak leaves in these conditions do not act as fuel model 9 fuels and rates of spread are often greater than what the litter models will indicate.

They do not react as true 1-hour fuels, being slower to react to relative humidity. Active burning will continue longer into the night, particularly on the ridge-tops and upper slopes. Oak litter fires can burn all night, spreading on the ridges and backing and flanking elsewhere, with occasional uphill runs.

Rapid Litter Fires

Rapid litter fires can be deceptively innocent at first appearance. Such fires have claimed a number of lives in this region. Fuels of these types of fires are chiefly hardwood leaf litter with, in some cases, components of brushy fuels (for example, mountain laurel)

These fires exhibit **sudden**, **rapid surface runs**, quickly changing from fires that had shown little indication or potential for extreme fire behavior. Prior to making their runs, some of these fires were innocent in appearance, slow moving, with small flame lengths.

Firefighters need to be constantly aware of where their escape routes and safety zones are located. Watch for indications of sudden changes and stay in communications.

Factors that seem to contribute to rapid litter fires are: clear skies, unstable atmosphere, dry surface fuels, low relative humidity, moderate to steep slopes, alignment of the slope toward the sun, and factors that contribute to drafting or convectional pull of the fire.

Convectional pull or lift on these slopes under unstable conditions can be enough to cause the fire to spread rapidly, especially when the fire enters chimney type topography, such as draws or saddles.

Another convectional force that would aid in initiating the rapid litter fire is a nearby fire or burnout that could help draw the fire. Fires may flank or back down slowly off to a spur ridge then enter a draw and spread rapidly uphill with little warning. The presence of fire above could also help pull or aid in drafting the fire uphill. **Rapid litter fires do not require a wind event. The convective forces present are enough to generate this fire behavior**.

Recurring Leaf-Fall

Early in the fall season as leaves continually fall, the potential for re-burning and escape exists. With dryness, heavy fuels, snags, and stump holes will retain heat. Previous ignitions, before leaf-fall is complete, may experience re-burns where additional leaf litter has fallen and the continuity enables the fires to re-ignite and carry. Oaks are typically later than other species to complete leaf-fall, and beech will hold leaves into winter. Pockets of trees, such as ridge-top chestnut oaks, usually have a later leaf-fall.

For heavy fuels to hold fire more than a week in this part of the country is somewhat unusual, but under drought conditions, three-week old fires may retain enough heat to cause re-ignitions with additional leaf-fall.

<u>Kudzu</u>

Most of the **kudzu** is cured out after frost in the fall and will burn very hot. You'll find it along roads and near structures. It is a fast-growing legume planted back decades ago for soil stabilization, but has been a pest ever since, **it is more likely to occur the farther south you travel.** It is the vine-like plant that has a wilted cured-out look after frost.

Dumps

Watch for **personal garbage dumps on fires, many behind private structures**. They may contain aerosol cans, diapers, who knows what. Meth labs and marijuana plantations are also found throughout the forest, watch out for their waste products.

Live Fuels

Live fuels on the Forests contribute to fire behavior under certain circumstances. In the short period **just prior to leaf-off**, the live fuel moisture of deciduous plants decreases to the point where their leaves will become available fuel. This can result in critical fire behavior particularly when the relative humidity is low and temperatures are higher, under clear skies (low dead fuel moisture content). Low-lying vegetation, such as huckleberry undergrowth or stands of younger regeneration can burn particularly hot under those conditions.

During the 'green leaf-out' growing season from approximately early May until around mid-October, fire activity is usually minimal. During extended dry spells, however, the live and dead fuel moisture contents will lower to the point where fires can become very active. This is especially pronounced on southern exposures. Under drought conditions, fire fighters need to be aware of this potential. During drought conditions, awareness of weather forecasts and conditions is important. Low relative humidity can initiate conditions for rapid-fire growth. Hardwood crown fires, though rare, have occurred under these conditions.

The most common involvement of live fuels in fire behavior on these forests occurs during the **leaf-off, dormant season**. Approximately 15-20% of the Forests are comprised of **pine and pine/oak stands**. Typically these stands occur on **dry**, **xeric ridge-tops and south facing slopes**. The majority of these pine stands contain pitch pine, Table Mountain pine and Virginia pine (southern yellow pines). Table Mountain pines and to some degree pitch pines, exhibit serotinous cones and other fire adaptive strategies. Often co-occurring on these sites is a **complex of understory of ericaceous shrubs such as mountain laurel, fetterbush and huckleberry.** When the dead fuel moisture content is low, particularly influenced by a **low relative humidity**, the fire behavior is such that this **mountain laurel/pine fuel complex** becomes active. This effect will become noticeable as the humidity drops to near 40%. Where the humidity has lowered to 30% much of the mountain laurel is actively supporting the fire intensity, and **reacts much like a brush fuel model**, with higher flame-lengths and greater rates-of-spread. The older, more decadent stems of mountain laurel seem to support combustion more readily that the younger stems. There may be some reaction to weather conditions of the leaf surface itself of the ericaceous plants that aids combustion. The live fuel moisture of these ericaceous shrubs themselves will also be important, particularly during extended dry periods, though they seem to burn at a wide range of live fuel moistures whenever the humidity is low (and the resultant lower dead fuel moistures). Since these fuels are often associated as an understory component of the southern yellow pines, **short crown runs in the pines** can be expected during the peak of the burning period. **Where these fuel types extend continuously over much of a slope, serious crown fire behavior may result.**

Watch for potential reburns in these fuels.

Mountain Laurel: Evergreen shrub to small tree up to 15 ft; Leaves 2-5 inches, smooth and glossy, tapered at both ends, no teeth

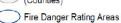
Huckleberry: Shrub 11-35 inches tall; Leaves 0.5-2 inches, alternate, yellowish-green, oval to oblong, buth with golden glands on underside (looks like fine gold dust)

Fire Danger Rating Areas

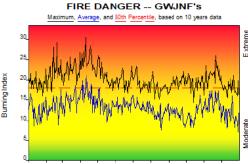
Note: Refer to the George Washington & Jefferson National Forests Fire Danger Operating Plan for more information regarding fire danger, indices, and policy.

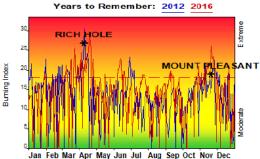
Fire Danger Rating Area (FDRA) Breakdown

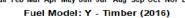
- FDRA 4: Lee & North River Ranger Districts
- FDRA 2: Glenwood/Pedlar, Warm Springs, James River, & Eastern Divide Ranger Districts
- FDRA 3: Mount Rogers NRA
- FDRA 1: Clinch Ranger District

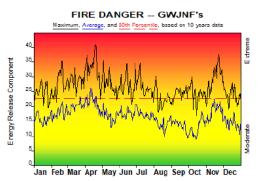


Fire Danger Rating Areas

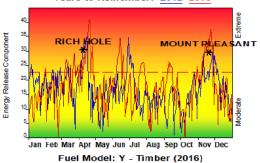

RegionID	FDRA Name	Acres	% of Area
1	Central	1,728,826	7%
2	Ridge & Valley	4,197,996	16%
3	Mount Rogers	2,017,666	8%
4	Northern Blue Ridge	4,587,338	18%
5	Piedmont	7,160,200	28%
6	Coastal	6,028,753	23%
	Total Acres	25,720,780	100%




Study Area Boundary


Pocket Cards

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec



Years to Remember: 2012 2016

Fire Danger Area:

- FDRA 2
- NWS: Blacksburg, VA SIG: Lime Kiln, Sawmill Ridge, Craig Valley, Stony Fork
- *Meets NWCG Wx Station Standards Note: The GWJNF's encompass FDRAs 1-4. FDRA 2 has experienced the largest fires and is being used to represent fire danger for the purposes of this PocketCard.

Fire Danger Interpretation

EXTREME - Use extreme caution ligh – Watch for change

oderate – Lower Potential, but always be aware

Maximum – Highest Burning Index by day for 2010-2019

Average - shows peak fire season over 10 years (3649 observations) 80th percentile - 20% of the 3649 days from 2010-2019 had a Burning Index above 18

Local Thresholds - Watch Out: Combinations of any of these factors can greatly increase fire behavior: 20' Wind Speed over 18 mph, RH less than 25%, Temperature over 85, 100-Hour Fuel Moisture less than 15

Remember what Fire Danger tells you:

- Burning Index gives day-to-day fluctuations calculated from temperature, humidity, wind, daily temperature * RH ranges, and precip duration.
- Wind is part of BI calculation.
- Watch local conditions and variations across the landscape Fuel, Weather, Topography Listen to weather forecasts - especially WIND.

Past Experience:

-Spring 2012 and Fall 2016 were characterized by prolonged drought, higher than normal temperatures, and several extreme wind events leading to large fire growth and extreme fire behavior. Rich Hole Fire: 15,454 acres, Mount Pleasant Fire: 11,229 acres.

-Increased Rate of Spread, Flame length, and Fireline Intensity occur in areas of mountain laurel, fetterbush, and huckleberry accumulations, making direct attack difficult and dangerous.

-After the top layer of leaf litter burns, the moist sub-leaf layer can dry out and ignite several days later, especially during wind events.

-Be aware of 100 hr fuel moisture conditions as an indicator of suppression difficulty

Responsible Agency: USFS George Washington & Jefferson National Forests Card Created: 7/21/2021 by Lindsey Curtin using FF+ 5.0

Fire Danger Area:

FDRA 2

- NWS: Blacksburg, VA
- SIG: Lime Kiln, Sawmill Ridge, Craig Valley, Stony Fork *Meets NWCG Wx Station Standards
- Note: The GWJNF's encompass FDRAs 1-4. FDRA 2 has experienced the largest fires and is being used to represent fire danger for the purposes of this PocketCard.

Fire Danger Interpretation

EXTREME - Use extreme caution igh – Watch for change Moderate – Lower Potential, but always be aware

Maximum - Highest Energy Release Component by day for 2010-2019 Average – shows peak fire season over 10 years (3649 observations) 80th percentile - 20% of the 3649 days from 2010-2019 had an Energy Release Component above 22

Local Thresholds - Watch Out: Combinations of any of these factors can greatly increase fire behavior: 20' Wind Speed over 18 mph, RH less than 25%, Temperature over 85, 100-Hour Fuel Moisture less than 15

- Remember what Fire Danger tells you: Energy Release Component gives seasonal trends calculated from temperature, humidity, daily
- temperature & RH ranges, and precip duration. Wind is NOT part of ERC calculation.
- Watch local conditions and variations across the landscape Fuel, Weather, Topography Listen to weather forecasts especially WIND.

Past Experience:

-Spring 2012 and Fall 2016 were characterized by prolonged drought, higher than normal temperatures, a several extreme wind events leading to large fire growth and extreme fire behavior. Rich Hole Fire: 15,454 acres, Mount Pleasant Fire: 11,229 acres.

Increased Rate of Spread, Flame length, and Fireline Intensity occur in areas of n

ntain laurel, fetterbush and huckleberry accumulations, making direct attack difficult and dangerous. After the top layer of leaf litter burns, the moist sub-leaf layer can dry out and ignite several days later,

especially during wind events

-Be aware of 100 hr fuel moisture conditions as an indicator of suppression difficulty.

Responsible Agency: USFS George Washington & Jefferson National Forests Card Created: 7/21/2021 by Lindsey Curtin using FF+ 5.0

29

ACTIVITY LOG (ICS 214)

1. Incident Name:		2. Operational	Date From: Date Date To: Date					
		Period:	Time From: HH					
3. Name:		4. ICS Position:		5. Home Agency (and Unit):				
S. Hume.		4.1001001001		s. Home Agency (and only)				
6. Resources Assi	gned:							
Nar		ICS Pos	ition	Home Agency (and Unit)				
7. Activity Log:								
Date/Time	Notable Activities							
8. Prepared by:	Name:	Position/Title	-	Signature:				
ICS 214, Page 1		Date/Time: Date						